Genome Sequence of an Obligate Intracellular Pathogen of Humans: *Chlamydia trachomatis*

Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R., Zhao, Q., Koonin, E. V., Davis, R.W. (1998) *Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis.* Science 282: 754-759. 10.1126/science.282.5389.754.

Presenters: Hilda Delgadillo, Katrina Sherbina, Dillon Williams Loyola Marymount University November 12, 2013

Glycogen Metabolism and Glycolytic within Aerobic Respiration

O Central carbon source is likely glutamate

- →Glucose and 2-oxoglutarate play supplementary roles depending on the chlamydial development stage.
- O Contains complete glycogen synthesis and degradation system

 \rightarrow Supports hypothesis of a central role for glucose or glucose derivatives as primary carbon source for some developmental stages.

0 Contain an intact glycolytic pathway

→ Exception is fructose-1,6-diphosphate aldolase not being identified.

TCA, Phospholipids, and Fatty Acid Biosynthesis in Aerobic Respiration

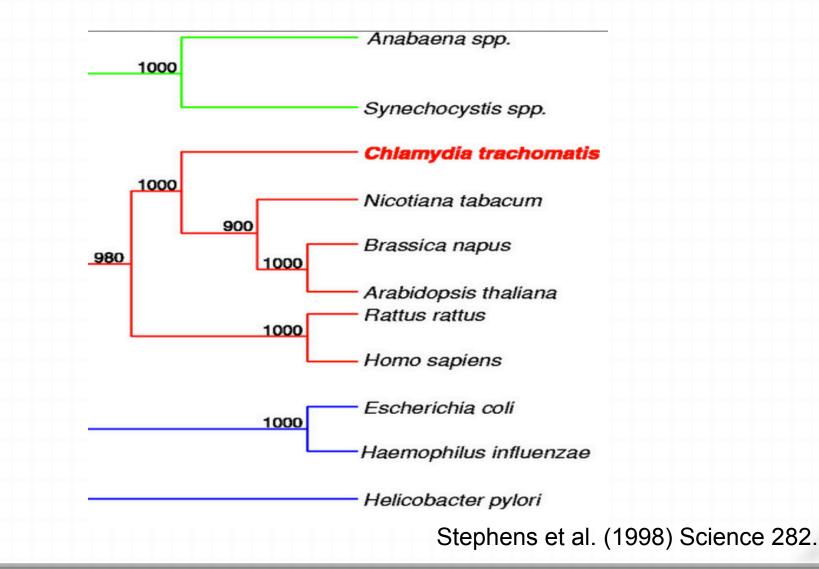
- O The tricarboxylic acid (TCA) cycle found to be incomplete because certain genes could not be identified.
 - \rightarrow However, the cycle could be fed by an uptake of glutamine or by uptake of 2-oxoglutarate.
- O Contains extensive number of genes for enzymes of fatty acid and phospholipid biosynthesis.
 - →Suggests that chlamydiae synthesize fatty acids, phosphatidylethanolamine, and phosphatidylglycerol de novo.

Nutrient Uptake and the Vacuole

- O Chlamydia invade eukaryotic cells
 →Grow within an intracellular vacuole, called an inclusion (does not fuse with lysosomes).
- O Intracellular vacuolar inclusion is apparently not permeable to small compounds.
 - \rightarrow Process by which chlamydiae obtain required nutrients is unknown.
- O Transport operon identified in genome encodes certain proteins associated with vacuole.
 - →Examples: ToIB, ToIQ, and ExbD-like proteins.

National Library of Medicine (2010)

A majority of Chlamydial genes are a result of horizontal gene transfer.


Table 1

Horizontally transferred genes in Chlamydia trachomatis.

Chlamydial gene	Support for horizontal transfer
Topoisomerase I, COOH- terminal domain (CT643), and stand-alone SWIB protein (CT460)	The α -helical SWIB domain detected only in eukaryotic chromatin-associated proteins.
SET domain protein (CT737)	SET domain found only in numerous eukaryotic chromatin-associated proteins.
Methionyl-tRNA synthetase (Met-RS) (CT032)	Chlamydial Met-RS groups with eukaryotic ones in phylogenetic analysis. A C2C2 "little finger" domain is conserved in <i>Chlamydia</i> , Archaea, and eukaryotes, to the exclusion of the other bacteria. An accessory, COOH-terminal RNA-binding domain is present in bacterial Met-RS, but not in <i>Chlamydia</i> , Archaea, or eukaryotes.
Pyrophosphate-dependent phosphofructokinase 1 and 2 (CT205, CT207)	Much greater similarity to eukaryotic than to bacterial orthologs, with the exception of the spirochetes.
Glucose-1-phosphate adenylyltransferase (CT489)	Supported by phylogenetic analysis (39); likely chloroplast origin in plants.
Glycogen phosphorylase (CT248)	Supported by phylogenetic analysis (39).
UDP-glucose pyrophosphorylase (CT715)	No easily detectable bacterial homologs.
Adenine nucleotide translocases 1 and 2 (CT495, CT065)	ATP/ADP translocases of this family are detectable only in <i>Rickettsia</i> and in plants.

Stephens et al. (1998) Science 282.

Tracing the Phylogeny of enoyl-acyl carrier protein reductase

