Evidence for a Role of the Polysaccharide Capsule Transport Proteins in Pertussis Pathogenesis

Mahrad Saeedi & Elena Olufson

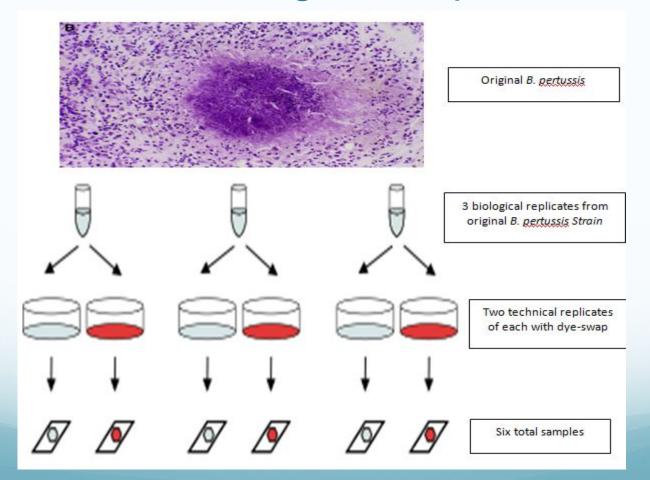
Departments of Biology and Computer Science
Loyola Marymount University
November 17, 2015

- Bordetella pertussis is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

- Bordetella pertussis is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

Significance of *B. pertussis* in the world

- The Gram-negative bacterium *Bordetella pertussis* is the causative agent of pertussis or whooping cough.
- Pertussis is responsible for 300,000-400,000 deaths each year as it is one of the top ten most infectious diseases worldwide.



Pictures by electron micrograph

Polysaccharide capsules in *B. pertussis* to determine virulence

- *B. pertussis* produces an intact polysaccharide (PS) microcapsule on the surface of its bacteria in response to environmental stimuli.
- This study identified PS capsules as important virulence determinants for bacterial pathogens, as well as KpsT as a membrane protein involved in the transport of PS polymers across the cellular envelope in *B. pertussis*.
- To determine the impact of PS capsules on the virulence of B. pertussis, a microarray experiment was run testing a ΔKpsT mutant against the wild-type.

Producing the Replicates

- Bordetella pertussis is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

Table 1: Bacterial strains and growth conditions

B. pertussis strains	Genotype/Relevant features	Source
BPSM	Tohama I derivative, mutant rpsL	[<u>72</u>]
Δ kpsT	BPSM carrying an in-frame deletion in kpsT ORF	This study
ΔkspE	BPSM carrying an in-frame deletion in kpsE ORF	This study
ΔνίρC	BPSM carrying an in-frame deletion in vipC ORF	This study
KOcaps	BPSM carrying an in-frame deletion from kpsM to wcbO ORFs	[<u>17</u>]
Δ kpsTcom	BPSM carrying an in-frame deletion in kpsT ORF containing vector pBBR::Pcaps-kpsT	This study
BvgS-VFT2	BPSM carrying amino acid substitution at F375E and Q461E at the periplasmic VFT2 domain	[<u>31</u>]
BvgS-VFT2-∆kpsT	BvgS-VFT2 carrying an in-frame deletion in kpsT ORF	This study
KOcaps:kpsT	KOcaps containing vector pBBR::Pcaps-kpsT	This study
KOcaps:kpsMT	KOcaps containing vector pBBR::Pcaps-kpsMT	This study
BPSH	BPSM derivative expressing his-tagged BvgS at the N-terminal	This study
BPSH-KOcaps	BPSH carrying an in-frame deletion from kpsM to wcbO ORFs	This study
BPSH-∆kpsT	BPSH carrying an in-frame deletion in kpsT ORF	This study
BPSH-∆kpsTcom	BPSH carrying an in-frame deletion in kpsT ORF containing vector pBBR::Pcaps-kpsT	This study

doi:10.1371/journal.pone.0115243.t001

B. pertussis strains used in this study.

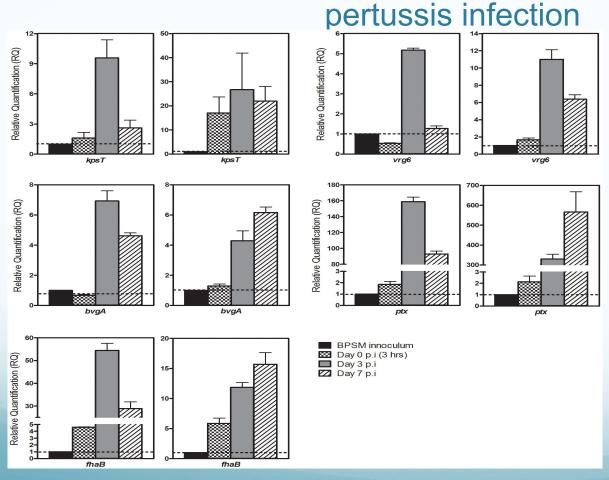
Table 2: Construction of *B. pertussis* capsule-deficient mutant strains

Oligo	Sequence (5' to 3')	Description
kpsM1F	ttggatcctgtccaccaccatctacgtggtgt	Forward primer to amplify PCR1-kpsT
kpsM2R	ttgctagccagctccatgccgcagatca	Reverse primer to amplify PCR1-kpsT
kpsE1F	ttgctagccttggacgaaaccatcgcgc	Forward primer to amplify PCR2-kpsT
kpsE2R	ttaagcttgccagctgcagattggcctc	Reverse primer to amplify PCR2-kpsT
kpsT1F	ttgaattccgcatgatctgcggcatcga	Forward primer to amplify PCR1-kpsE
kpsT2R	ttaagcttgacatactggtcggacgcaat	Reverse primer to amplify PCR1-kpsE
wbpT7F	ttaagcttgaggccaatctgcagctggc	Forward primer to amplify PCR2-kpsE
wbpT6R	ttggatcctatgcccgcggcgcgctt	Reverse primer to amplify PCR2-kpsE
wbpTF	ttgaattccatgccgccggtggaccg	Forward primer to amplify PCR1-vipC
wbpTR	ttaagcttacggcacatgcccagcacg	Reverse primer to amplify PCR1-vipC
wzaF	ttaagcttgagttcgagccggtgctgg	Forward primer to amplify PCR2-vipC
wzaR	ttggatccttgctggtaaggaatgcgctg	Reverse primer to amplify PCR2-vipC
kpsTcomF	ttggatcccgttgatggagacggccatg	Forward primer to amplify full length kpsT
kpsTcomR	ttaagctttcaggattgctcagcgtcgac	Reverse primer to amplify full length kpsT
BvgA-BamHI-F	tt <u>ggatcc</u> tgtactgagattcgccgtc	Forward and reverse primer to amplify PCR1 from 3' end of <i>bvgA</i> ORF to 5' end of <i>bvgS</i> signal peptide ORF
BvgS-Xbal-R	tttctagagettgcctgcggggc	
BvgS-Xbal-6His-F	tt <u>tctaga</u> catcatcaccatcaccaggagctgaccctg	Forward and reverse primer to amplify PCR2 downstream of <i>bvgS</i> signal peptide sequence; forward primer carries nucleotides encoding 6x histidines
BvgS-HindIII-R	ttaagettggegaetaegegaaegteattgaa	

doi:10.1371/journal.pone.0115243.t002

List of forward and reverse primers used in cloning.

Table 3: Real-time polymerase chain reaction


Gene	Forward primer (5′-3′)	Reverse primer (5'-3')
bvgA	TCCTCATCATTGACGATCACCC	CGATGACTTCCAGCCCGTCCA
bvgR	AACAGCTGCTGGCGCAGGTT	GCCGCAGGCTATGCAGGCTT
brkA	GTATCTCGATAGATTCCGTCAAT	CGTGTTGTCCCGTGGTCG
fhaB	TGTCCGCCATGGAGTATTTCAA	CCCAAATGTACTCGTAGCGATTC
ptx	GCGTTGCACTCGGGCAATTC	CAGATGGTCGAGCACATTGTC
sphB1	TGCTGCAGGACAACCTGTATTC	TCAGGCCGGCCGAGACTTCG
recA	GACGACAAAACCAGCAAGGCC	CGTAGACCTCGATCACGCGG

doi:10.1371/journal.pone.0115243.t003

List of forward and reverse primers (from 5' to 3') used in Real-time PCR analysis.

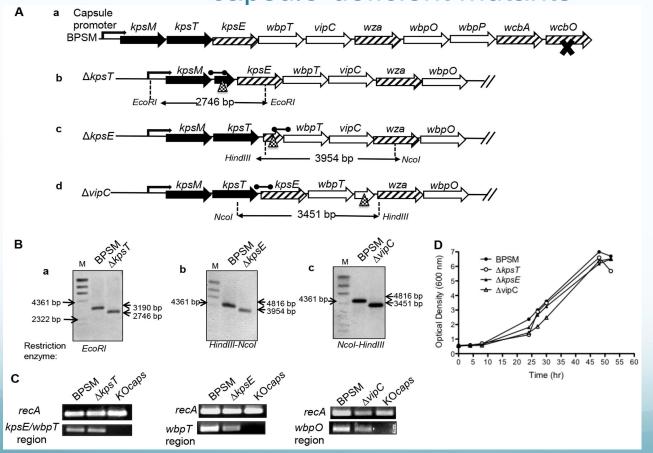

- Bordetella pertussis is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

Figure 1: The capsule locus expression is modulated during

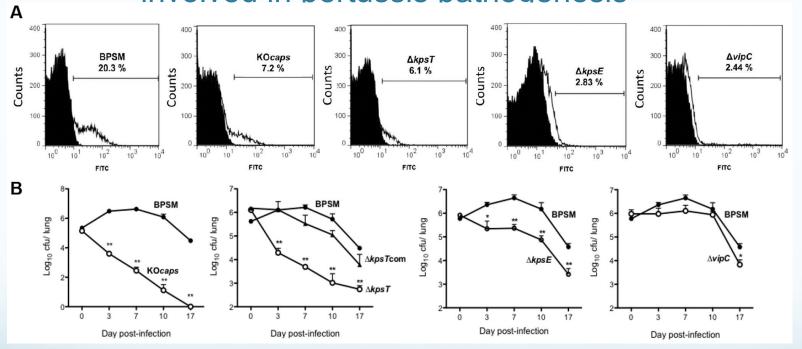

Relative transcriptional activity of vrgs and vags in BPSM bacteria recovered from mice lungs versus in vitro BPSM grown in virulent phase.

Figure 2: Construction and characterization of *B. pertussis* capsule-deficient mutants

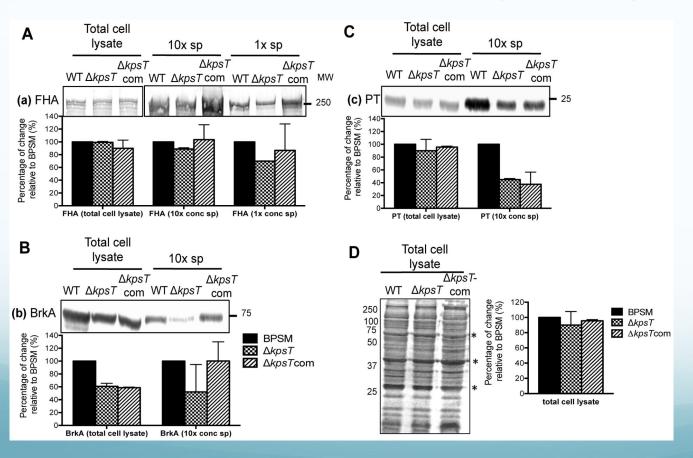

Construction of ΔkpsT, ΔkpsE and ΔvipC B. pertussis mutants.

Figure 3: The PS capsule transport-export proteins are involved in pertussis pathogenesis

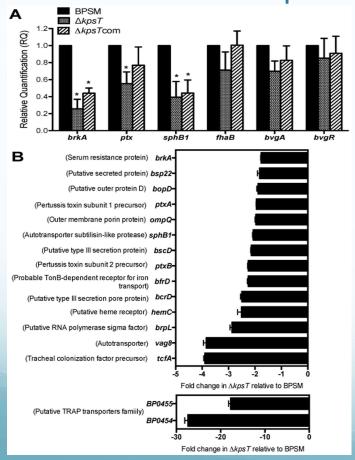
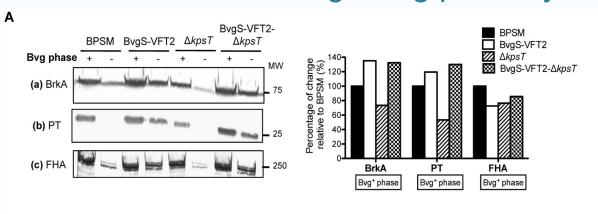
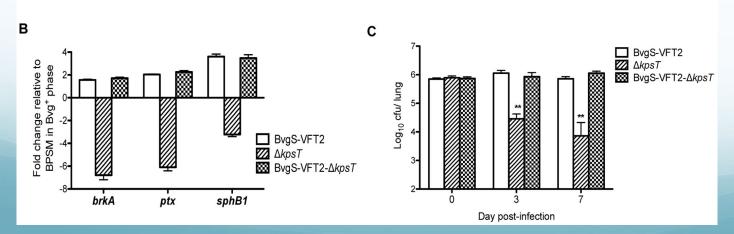
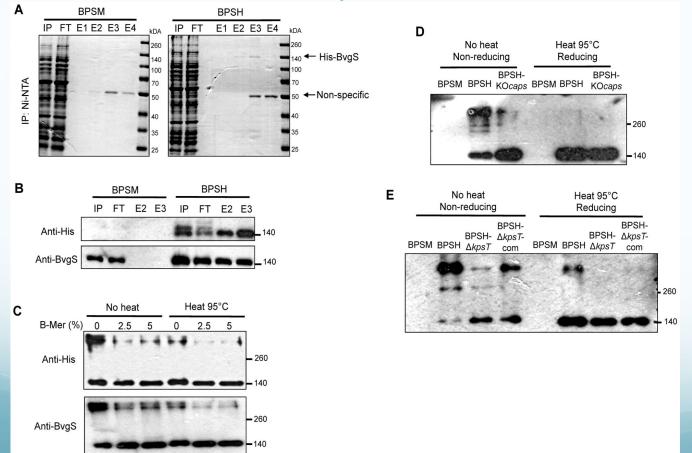

Phenotypic characterization of the $\Delta kpsT$, $\Delta kpsE$ and $\Delta vipC$ mutants.

Figure 4: Absence of KpsT in *B. pertussis* results in mild reduction in the production and/or secretion of major *bvg*-regulated virulence factors


Production of *bvg*-regulated virulence proteins in Δ*kpsT* mutant.


Figure 5: Absence of KpsT alters the global gene expression pattern in *B. pertussis*

Transcriptional activity in $\Delta kpsT$ mutant.(A) Relative transcriptional activity of *vags*.


Figure 6:Functional link between KpsT and the BvgA/S signaling pathway

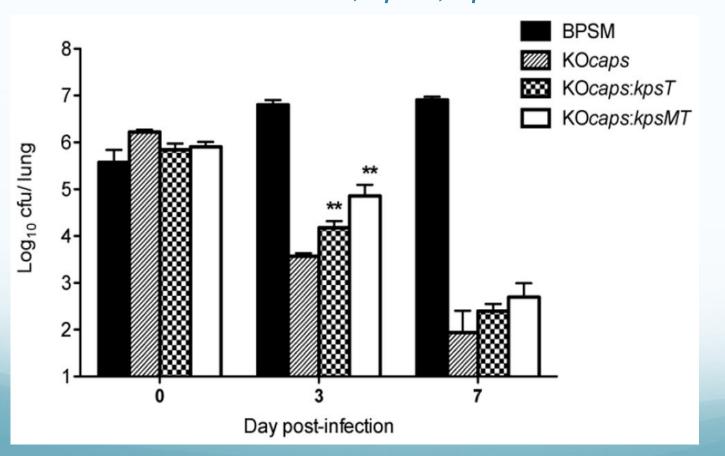

Characterization of the BvgS-VFT2-ΔkpsT mutant. (A) Production of bvg-regulated virulence proteins.

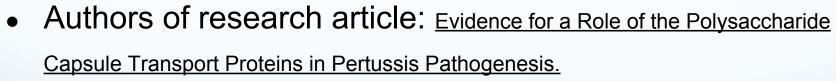
Figure 7: Expression and purification of His-BvgS from *B. pertussis* strains.

Coomassie blue analysis, Western blot analysis, **Detections of** BvgS associated oligomers and **BvgS** monomer

Figure 8: Mice were infected intranasally with *B. pertussis* BPSM, *kpsT, kpsMT* strains

Lung
colonization
profile of *B.*pertussis
KOcaps:kpsT
and KOcaps:
kpsMT
strains.

- Bordetella pertussis is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.


Discussion

- The results of this experiment were compared to findings in previous studies.
 - In conclusion, this research portrays that the *B. pertussis* PS capsule transporterexport machinery and in particular KpsT are necessary for optimal expression of virulence genes and therefore play an important role in pertussis pathogenesis.

Acknowledgements

- Dr. Dahlquist
- Dr. Dionisio

- Biological Databases Students
 - Thank you for listening!

References

Hoo, R., Lam, J.H., Huot, L., Pant, A., Li, R., Hot, D., & Alonso, S. (2014). Evidence for a Role of the Polysaccharide Capsule Transport Proteins in Pertussis Pathogenesis. PLoS ONE, 9(12):e115243. doi: 10.1371/journal.pone.0115243

Pictures:

http://media.historyofvaccines.org/images/000744_540.jpg

http://mediad.publicbroadcasting. net/p/shared/npr/styles/x_large/nprshared/201404/306870910.jpg

Questions