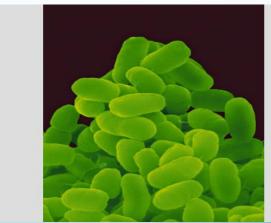

Evidence for a Role of the Polysaccharide Capsule Transport Proteins in Pertussis Pathogenesis

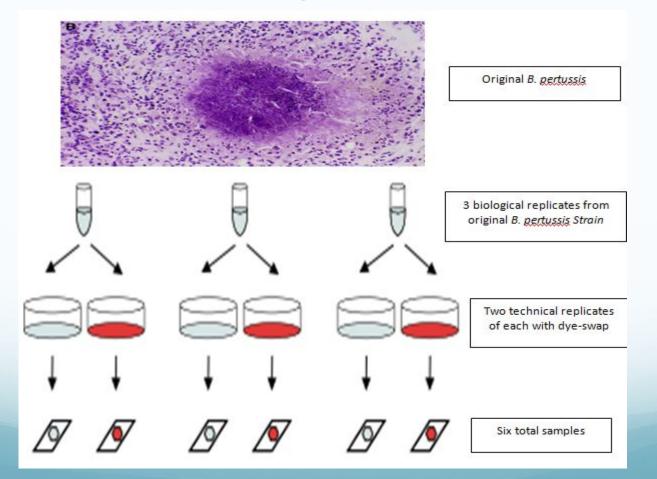
Mahrad Saeedi & Elena Olufson Departments of Biology and Computer Science Loyola Marymount University November 17, 2015


- *Bordetella pertussis* is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

- Bordetella pertussis is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

Significance of *B. pertussis* in the world

- The Gram-negative bacterium *Bordetella pertussis* is the causative agent of pertussis or whooping cough.
- Pertussis is responsible for 300,000-400,000 deaths each year as it is one of the top ten most infectious diseases worldwide.



Pictures by electron micrograph

Polysaccharide capsules in *B. pertussis* to determine virulence

- *B. pertussis* produces an intact polysaccharide (PS) microcapsule on the surface of its bacteria in response to environmental stimuli.
- This study identified PS capsules as important virulence determinants for bacterial pathogens, as well as KpsT as a membrane protein involved in the transport of PS polymers across the cellular envelope in *B. pertussis*.
 To determine the impact of PS capsules on the virulence of *B. pertussis*, a microarray experiment was run testing a ∆KpsT mutant against the wild-type.

Producing the Replicates

- *Bordetella pertussis* is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

Table 1: B. pertussis strains used in this study.

B. pertussis strains	Genotype/Relevant features	Source
BPSM	Tohama I derivative, mutant rpsL	[<u>72</u>]
∆kpsT	BPSM carrying an in-frame deletion in kpsT ORF	This study
∆kspE	BPSM carrying an in-frame deletion in kpsE ORF	This study
∆vipC	BPSM carrying an in-frame deletion in vipC ORF	This study
KOcaps	BPSM carrying an in-frame deletion from kpsM to wcbO ORFs	[<u>17</u>]
∆kpsTcom	BPSM carrying an in-frame deletion in kpsT ORF containing vector pBBR::Pcaps-kpsT	This study
BvgS-VFT2	BPSM carrying amino acid substitution at F375E and Q461E at the periplasmic VFT2 domain	[<u>31]</u>
BvgS-VFT2-∆kpsT	BvgS-VFT2 carrying an in-frame deletion in kpsT ORF	This study
KOcaps:kpsT	KOcaps containing vector pBBR::Pcaps-kpsT	This study
KOcaps:kpsMT	KOcaps containing vector pBBR::Pcaps-kpsMT	This study
BPSH	BPSM derivative expressing his-tagged BvgS at the N-terminal	This study
BPSH-KOcaps	BPSH carrying an in-frame deletion from kpsM to wcbO ORFs	This study
BPSH-∆kpsT	BPSH carrying an in-frame deletion in kpsT ORF	This study
BPSH-∆kpsTcom	BPSH carrying an in-frame deletion in kpsT ORF containing vector pBBR::Pcaps-kpsT	This study

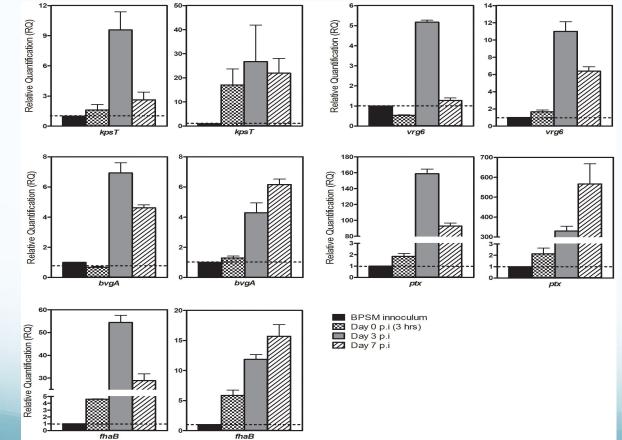
doi:10.1371/journal.pone.0115243.t001

Table 2: List of forward and reverse primers used in cloning.

Oligo	Sequence (5′ to 3′)	Description		
kpsM1F	ttggatcctgtccaccaccatctacgtggtgt	Forward primer to amplify PCR1-kpsT		
kpsM2R	tt <u>gctagc</u> cagctccatgccgcagatca	Reverse primer to amplify PCR1-kpsT		
kpsE1F	tt <u>gctagc</u> cttggacgaaaccatcgcgc	Forward primer to amplify PCR2-kpsT		
kpsE2R	tt <u>aagctt</u> gccagctgcagattggcctc	Reverse primer to amplify PCR2-kpsT		
kpsT1F	tt <u>gaattc</u> cgcatgatctgcggcatcga	Forward primer to amplify PCR1-kpsE		
kpsT2R	tt <u>aagctt</u> gacatactggtcggacgcaat	Reverse primer to amplify PCR1-kpsE		
wbpT7F	tt <u>aagctt</u> gaggccaatctgcagctggc	Forward primer to amplify PCR2-kpsE		
wbpT6R	tt <u>ggatcc</u> tatgcccgcggcgcgggctt	Reverse primer to amplify PCR2-kpsE		
wbpTF	tt <u>gaattc</u> catgccgccggtggaccg	Forward primer to amplify PCR1-vipC		
wbpTR	tt <u>aagctt</u> acggcacatgcccagcacg	Reverse primer to amplify PCR1-vipC		
wzaF	tt <u>aagctt</u> gagttcgagccggtgctgg	Forward primer to amplify PCR2-vipC		
wzaR	tt <u>ggatcc</u> ttgctggtaaggaatgcgctg	Reverse primer to amplify PCR2-vipC		
kpsTcomF	tt <u>ggatcc</u> cgttgatggagacggccatg	Forward primer to amplify full length kpsT		
kpsTcomR	tt <u>aagctt</u> tcaggattgctcagcgtcgac	Reverse primer to amplify full length kpsT		
B∨gA-BamHI-F	ttggatcctgtactgagattcgccgtc	Forward and reverse primer to amplify PCR1 from 3′ end of <i>bvgA</i> ORF to 5′ end of <i>bvgS</i> signal peptide ORF		
BvgS-Xbal-R	tt <u>tctaga</u> gcttgcctgcgcgggc			
BvgS-Xbal-6His-F	tt <u>tctaga</u> catcatcaccaccaggagctgaccctg	Forward and reverse primer to amplify PCR2 downstream of <i>bvgS</i> signal peptide sequence; forward primer carries nucleotides encoding 6x histidines		
BvgS-HindIII-R	tt <u>aagctt</u> ggcgactacgcgaacgtcattgaa			
Restriction sites are underlined.				

doi:10.1371/journal.pone.0115243.t002

Table 3: List of forward and reverse primers (from 5' to 3') used in Real-time PCR analysis.


Gene	Forward primer (5′-3′)	Reverse primer (5′-3′)
bvgA	TCCTCATCATTGACGATCACCC	CGATGACTTCCAGCCCGTCCA
bvgR	AACAGCTGCTGGCGCAGGTT	GCCGCAGGCTATGCAGGCTT
brkA	GTATCTCGATAGATTCCGTCAAT	CGTGTTGTCCCGTGGTCG
fhaB	TGTCCGCCATGGAGTATTTCAA	CCCAAATGTACTCGTAGCGATTC
ptx	GCGTTGCACTCGGGCAATTC	CAGATGGTCGAGCACATTGTC
sphB1	TGCTGCAGGACAACCTGTATTC	TCAGGCCGGCCGAGACTTCG
recA	GACGACAAAACCAGCAAGGCC	CGTAGACCTCGATCACGCGG

doi:10.1371/journal.pone.0115243.t003

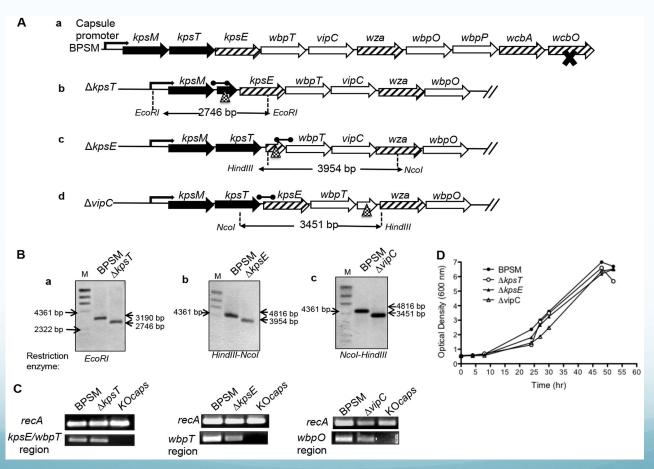
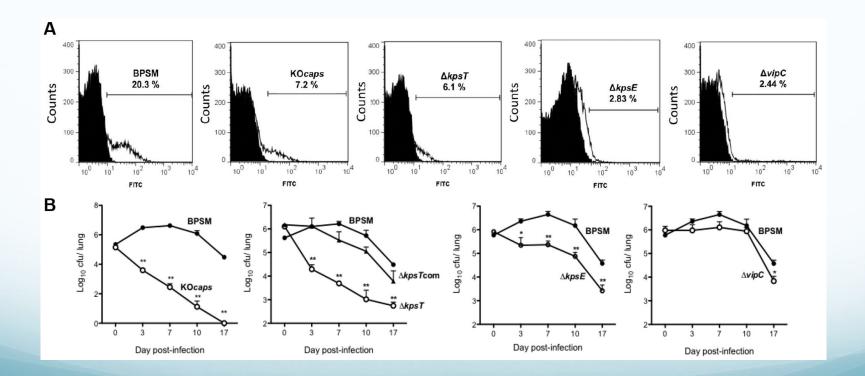
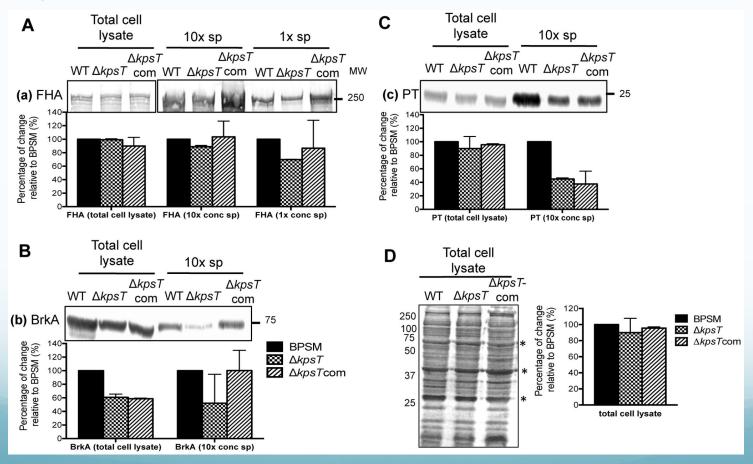
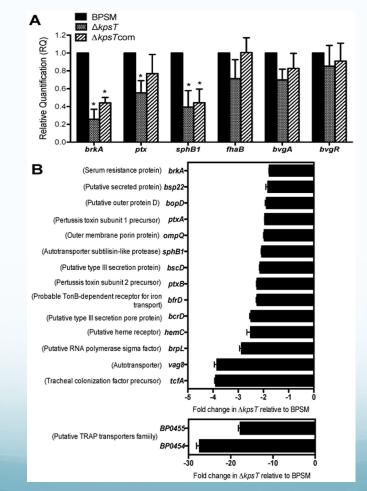
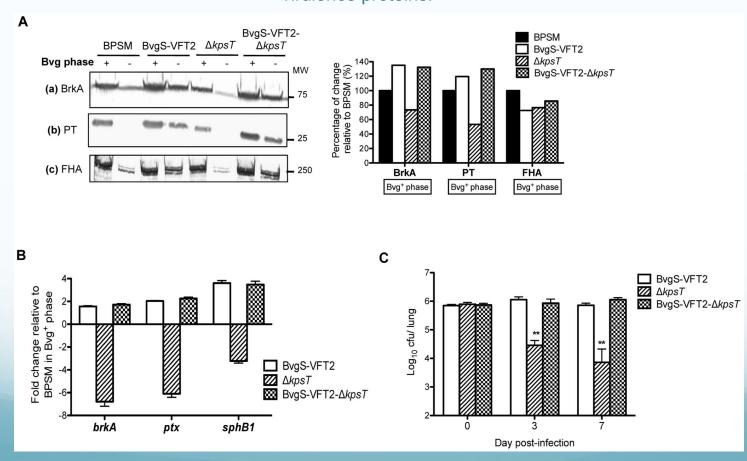

- *Bordetella pertussis* is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

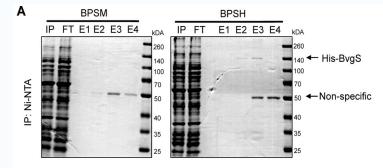
Figure 1: Relative transcriptional activity of *vrgs* and *vags* in BPSM bacteria recovered from mice

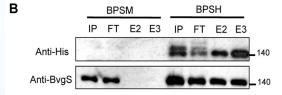

lungs versus in vitro BPSM grown in virulent phase.

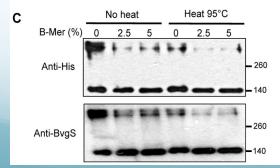

Figure 2: Construction of $\Delta kpsT$, $\Delta kpsE$ and $\Delta vipC B. pertussis$ mutants.


Figure 3: Phenotypic characterization of the $\Delta kpsT$, $\Delta kpsE$ and $\Delta vipC$ mutants.


Figure 4: Production of *bvg*-regulated virulence proteins in $\Delta kpsT$ mutant.


Figure 5: Trancriptional activity in *AkpsT* mutant.(A) Relative transcriptional activity of vags.




Figure 6: Characterization of the BvgS-VFT2- $\Delta kpsT$ mutant. (A) Production of *bvg*-regulated virulence proteins.

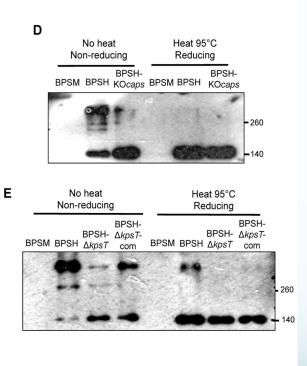


Figure 7: Expression and purification of His-BvgS from *B. pertussis* strains.

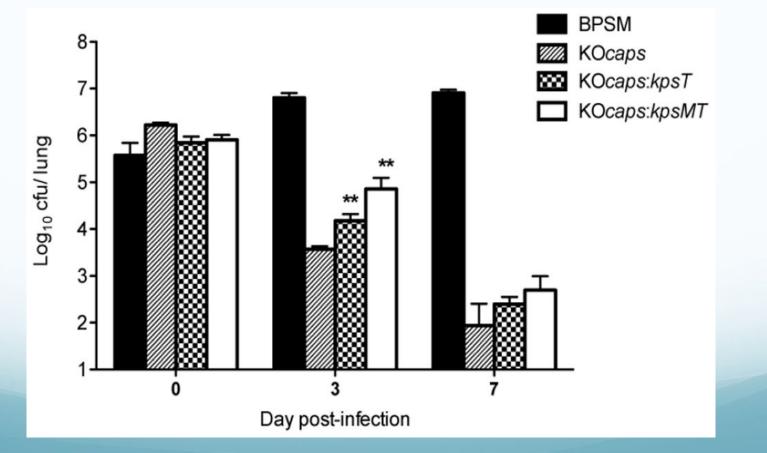


Figure 8: Lung colonization profile of *B. pertussis* KOcaps:kpsT and KOcaps:kpsMT strains.

- *Bordetella pertussis* is a deadly bacteria that is abundant around the world and thus is a great target for research.
- The tables from the article depict the individual strains and primers manipulated throughout the experiment.
- The figures provided articulate the methods and results demonstrated in the study.
- A comparison between the current findings and previous experimental findings allows for further insight on the conclusions.

Discussion

• The results of this experiment were compared to findings in previous studies. In conclusion, this research portrays that the *B. pertussis* PS capsule transporterexport machinery and in particular KpsT are necessary for optimal expression of virulence genes and therefore play an important role in pertussis pathogenesis.

Acknowledgements

- Dr. Dahlquist
- Dr. Dionisio

Authors of research article: <u>Evidence for a Role of the Polysaccharide</u>

Capsule Transport Proteins in Pertussis Pathogenesis.

- Biological Databases Students
 - Thank you for listening!

References

Hoo, R., Lam, J.H., Huot, L., Pant, A., Li, R., Hot, D., & Alonso, S. (2014). Evidence for a Role of the Polysaccharide Capsule Transport Proteins in Pertussis Pathogenesis. PLoS ONE, 9(12):e115243. doi: 10.1371/journal.pone.0115243

Pictures:

http://media.historyofvaccines.org/images/000744_540.jpg

http://mediad.publicbroadcasting. net/p/shared/npr/styles/x_large/nprshared/201404/306870910.jpg

