Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis

Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., ... & Fraser, C.
M. (2002). Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. *Nature biotechnology, 20*(11), 1118-1123. doi:10.1038/nbt749

Mary Alverson Josh Kuroda

Biological Databases Loyola Marymount University November 24th, 2015

- The Genome Features of S. oneidensis
- S. oneidensis compared to other Organisms
- The identification of phages
- S. oneidensis can be used for bioremediation
- Ensembl is the Model Organism database

- The Genome Features of S. oneidensis
- S. oneidensis compared to other Organisms
- The identification of phages
- S. oneidensis can be used for bioremediation
- Ensembl is the Model Organism database

The Genome Was Sequenced

- The whole-genome sequencing method was used.
- The S. oneidensis was grown in a single, isolated colony.
- A plasmid library and a shotgun library were sequenced and joined.
- Sequencing reactions were used to close gaps and improve coverage.

Figure 1 Shows the Circular Genome of S. oneidensis

- predicted coding regions on the plus and minus strand
- genes involved in the electron transport chain
- transposon-related genes and the phage-related genes
- percentage of G+C in relation to the mean G+C
 - χ^2 values for trinucleotide composition
 - tRNAs and the rRNAs

Table 1 Shows the Genome Features of
S. oneidensis

Table 1. General features of the Shewanella oneidensis genome

	Chromosome	Plasmid
Size (bp)	4,969,803	161,613
G+C percentage	46.0	43.7
Number of predicted CDSs	4,758	173
Average size of CDS (bp)	893	742
Percentage coding	85.5	79.5
Number of rRNA operons (16S-23S-5S)	9	0
Number of tRNAs ^a	102	0
Number of CDSs similar to known proteins	2,430	91
Number of CDSs similar to proteins of unknown function ^b	371	7
Number of conserved hypothetical proteinsc	843	28
Number of hypothetical proteinsd	1,114	47
Number of rho-independent terminators	833	13

^aThere is one selenocysteine tRNA likely to be important in translation of the selenium-containing, nitrate-inducible formate dehydrogenase (SO0101).

^bProteins of unknown function have substantial similarity (homology) to a named protein for which there is currently no known function.

Conserved hypothetical proteins have sequence similarity to a translation of another CDS, but there is currently no evidence a protein is expressed.

^dHypothetical proteins have no substantial similarity to another protein.

- The Genome Features of S. oneidensis
- S. oneidensis compared to other Organisms
- The identification of phages
- S. oneidensis can be used for bioremediation
- Ensembl is the Model Organism database

The Genome of S. oneidensis was compared to Other Genomes

- Glimmer software was used to identify open reading frames that were likely to encode proteins.
- The open reading frames were used to identify likely proteins from the amino acids.
- The final genome was compared to all other complete genomes available.

Figure 2 Compares the S. oneidensis Open Reading Frames With Those of Sequenced Organisms

Figure 3 Illustrates Whole-genome Proteome Alignments Between S. oneidensis and V. cholerae

http://www.nature.com/nbt/journal/v20/n11/full/nbt749.html

V. cholerae

- The Genome Features of S. oneidensis
- S. oneidensis compared to other Organisms
- The identification of phages
- S. oneidensis can be used for bioremediation
- Ensembl is the Model Organism database

Phages Were Found

- A lambda-like phage genome was discovered, both integrated in the *S. oneidensis* genome and present in nonintegrated form.
- This *Shewanella* phage is an important tool for *Shewanella* genome engineering.
- Two phages related to the *Escherichia coli* were also discovered.

Similarities Were Found Between Phages

- The Genome Features of S. oneidensis
- S. oneidensis compared to other Organisms
- The identification of phages
- S. oneidensis can be used for bioremediation
- Ensembl is the Model Organism database

S. oneidensis Can Be Used For Bioremediation

- S. oneidensis can reduce the levels oxidized metals.
- S. oneidensis is infrequently a human pathogen.
- The lambda-like phage introduces the possibility of genetically manipulating the genes.
- Others can now conduct experiments with the genome in order to better predict the behaviors of S. oneidensis.

- The Genome Features of S. oneidensis
- S. oneidensis compared to other Organisms
- The identification of phages
- S. oneidensis can be used for bioremediation
- Ensembl is the Model Organism database

Ensembl is the Model Organism Database

- You can search for genes, regions of the chromosome, or description such as enzymes or proteins, along with splice variants, cDNA and protein sequences, and non-coding RNAs.
- This is a meta database; it gets data regarding S. oneidensis from the European Nucleotide Archive.
- Data is curated both electronically and manually (in-house).
- It is maintained at the EMBL-European Bioinformatics Institute under the guidance of the INSDC International Advisory Committee and a Scientific Advisory Board.
- There are no restrictions to accessing the database.

Ensembl is User-friendly

http://bacteria.ensembl.org/shewanella_oneidensis_mr_1/Info/Index?db=core

Acknowledgements

Dr. Dioniso

Dr. Dahlquist

Questions?