Generating Information of Genes from
Databases Relating to Cold-Shock
Expression Responses

Eddie Azinge, Dina Bashoura, John Lopez, Corinne Wong
BIOL 367 Biological Databases
Loyola Marymount University, Los Angeles, CA, USA

December 15, 2017



Introduction.

Genes are able to change their expression, turning on or off, and they are able to
influence the expression of other genes. There is still a need to understand the interactions and
influences between genes of organisms. Moreover, there is more to learn about how the genome
responds to environmental conditions to aid organisms in survival.

Saccharomyces cerevisiae, yeast, is known to respond to cold shock. Yeast gene
expression up or down regulates in response to cold shock, meaning they increase or decrease
their expression. Several clusters of genes form that cooperatively regulate, relating to specific
responses of the organism. For example, expression of genes that are essential factors for
transcription and processing were up-regulated in response to cold shock. In another example,
the expression of genes related to trehalose and glycogen production were up-regulated to
increase the organisms energy preserves. Overall, there was a clear trend of expression changes.
The genes first changed expression to help transcription and translation, so the organism can
make proteins to help maintain the integrity and basic functions of cells. Next, the expressions of
genes changed to improve tolerance to the new environmental condition. Stress response induced
genes showed up-regulation of expression in yeast cells in response to cold shock, which allowed
them to adapt and gain tolerance to the low temperature (Sahara, et al., 2002).

Yeast cold shock microarray data collected from Dr. Dahlquist’s lab, testing the
responses of yeast cell genes to cold shock, will be analyzed. The data will be searched for
significant changes in expression (up or down regulation) of genes and in which clusters or areas

of function in the cell. This analysis will give further information about the influences certain



yeast cell genes have and how they react to cold shock. This newly analyzed data can be
compared with that of Sahara, et al. (2002) to gain more confidence in the current understanding
and knowledge of gene interactions.

There is previous research on the subject, like cold shock response of yeast genes, but
there is still information that is unknown. It is still unknown which transcription factors regulate
and control responses to cold shock in yeast. It is also still unknown why some genes are up or
down regulated. For example, in response to cold shock, yeast gene expressions of HSP12 and
HSP26 were up-regulated. This is peculiar because HSP12 and HSP26 are heat shock protein
genes, and yet they were up-regulated in response to cold shock.

To learn more about these unknown aspects of gene responses, there are useful tools that
can help reveal more information and answers, like GRNsight. GRNsight allows researchers to
see the connections between genes. Researchers can see which genes positively influence each
other and which genes negatively influence each other. This tool will help researchers learn more
about gene interactions and allow them to connect gene interactions to responses to stresses.

GRNisight is already a useful tool, but what further information would be valuable to
researchers when looking at a gene regulatory network? This project focused on which
information would be helpful to provide to GRNsight users. Important information was selected
from several databases, including UniProt, Saccharomyces Genome Database (SGD), Ensembl,
NCBI, and JASPAR. Code was created to pull this information from the various databases and
present it on the website for users to easily access. This information allows the users to learn
more about the certain genes right from the program, which is extremely useful and allows for

more efficiency when learning about the interactions and roles of genes.



Materials & Methods.

Data Analyst.

The job of the data analyst began by working with the project manager/quality assurance
to research articles on S. Cerevisiae, commonly named yeast. Sites like the National Center for
Biotechnology Information (NCBI), PubMed, Google Scholar, and Web of Science were used as
sources to research information on yeast and their effects on cold shock, ensuring that every
article found contained three topics: yeast, cold shock, and microarray data. Three articles per
team (Data Analyst and Quality Assurance) were generated, totalling in 6 articles that could be
used as references for our future analyses throughout this project. After consulting Dr. Dahlquist
about the 6 articles, one of the six was chosen to focus on and present in a journal club the
following week. This article was written by Sahara, Goda, & Ohgiya and titled “Comprehensive
expression analysis of time-dependent genetic responses in yeast cells to low temperature”
(2002). For a deeper explanation of methods, refer to Dina Bashoura’s Week 11 electronic
notebook (LMU BioDB, 2017).

After presenting in journal club, the analysis portion of this project began. Data from Dr.
Dahlquist’s lab on yeast and cold shock was provided in excel files with multiple deletion strains
of yeast genes that are thought to be involved in gene expression. The gene dGLN3 was assigned
to our team for further analysis. Each gene on the spreadsheet contained microarray data for
expression rates at time points 15, 30, 60, 90, and 120. Initially, the data for dGLN3 was
processed by performing a within-strain Analysis of Variance (ANOVA) to determine if any

genes had a gene expression change that was significantly different than zero at any timepoint.



Once this ANOVA was done on excel, the data was filtered to only show significant results with
a p value of < 0.05. This information told us which genes were being upregulated and which
were being down regulated. The significance was determined by performing adjustments to the p
value by correcting for the multiple testing problem.This was done by calculating the Bonferroni
p value as well as the Benjamini & Hochberg p value. The Bonferroni adjustment compensates
for the increasing likelihood of incorrectly rejecting a null hypothesis caused by testing multiple
hypotheses. The Benjamini & Hochberg correction produces more stringent results than the
Bonferroni p value, allowing for a more confident p value. The results were then compared to the
wild type strain used in this research and presented in Table 1. For a deeper explanation of
methods, refer to Dina Bashoura’s Week 8 electronic notebook (LMU BioDB, 2017).

Once an ANOVA was performed, the microarray data was prepared to be put into Short
Time-Series Expression Miner (STEM). This Java program allows for the clustering, comparing,
and visualizing of short time series gene expression data from microarray experiments (Earnest
& Bar-Joseph, 2006). STEM provides the opportunity for researchers to identify significant
temporal expression patterns profiles and the genes associated with these profiles. To prepare the
data, the insignificant Benjamini & Hochberg p values were deleted, leaving only the significant
data timepoints. The average log fold change for each timepoint was then imputed into STEM
and run. STEM generated a Gene Ontology (GO) list for sets of genes having the same temporal
expression pattern to easily visualize the behavior of genes belonging to a given GO category.
One of the 7 significant profiles generated were used for further analysis. Figure 1 shows the
significant profiles generated from STEM. The implication is that the genes in this profile share

the same expression pattern because they are regulated by the same (or the same set) of


http://www.cs.cmu.edu/~zivbj

transcription factors. Table 2 in results shows 3 of the 406 GO terms assigned to that profile. For
a deeper explanation of methods, refer to Dina Bashoura’s Week 10 electronic notebook (LMU
BioDB, 2017).

The final step in analyzing the microarray data was to utilize Yeastract to infer which
transcription factors regulate the profile chosen from STEM. Yeastract is a curated repository of
163,000 regulatory transcription factors in yeast (Teixeira, 2013). The GO list generated from
STEM was imputed into Yeastract to determine a list of transcription factor candidates that are
most likely associated with the gene functions in the profile. The output file gave this list of
transcription factors ranked by significance. For a deeper explanation of methods, refer to Dina
Bashoura’s Week 14 electronic notebook (LMU BioDB, 2017).

The next step was to utilize GRNsight to visualize the transcription factors in a network.
This process began by choosing 15 significant transcription factors from the output file from
Yeastract, which can be seen with their p values on Table 3. This list was used to generate a
regulatory matrix with the help of Yeastract once again. Once this list was imputed into
Yeastract, it generated a mathematical output file which was later formatted to be used in
GRNssight to visualize the matrix (Dahlquist et. al., 2016). This allowed for the visualization of
the matrix with unweighted transcription factors chosen, meaning the magnitude and direction of
the transcription factors in relation to each other were not incorporated in this matrix (Figure 3).
In order to view the magnitude and direction, MATLAB was utilized to run GRNmap which
allows for the visualization of these properties. The output file from GRNmap was put back into
GRNssight and resulted in a colored matrix showing the upregulatory and down regulatory

qualities of the transcription factors, as well as the magnitude and direction of them (Figure 4).



For a deeper explanation of methods, refer to Dina Bashoura’s Week 14 electronic notebook

(LMU BioDB, 2017).

Quality Assurance.

The quality assurance guild worked together to decide which information was useful and
important. An initial list was made of information related to genes that seemed important. Then,
the five databases (UniProt, SGD, Ensembl, NCBI, and JASPAR) were examined and scanned
for the most valuable information. Another list was made, dividing the desired content into

separate lists for each database. This list was then given to the coders, so they knew what to pull.

Coders.

The process of coding the API functionality can be characterized by setting up,
researching, collaborating, and implementing. Our job was to essentially convert data given to us
in document form and extract pieces of the data that was requested by the other teams. As
coders, we needed to ensure that our personal computers were set up to handle this task and our
version control environment was proficient, and the first 3 milestones ensured this. Milestone 1
allowed us to make sure we had Node.js, Atom, Git, Google Chrome Developer Tools, and
CURL installed for working. Milestone 2 allowed us to create a copy of the GRNSight project
for us to work on without modifying the public copy. Finally, Milestone 3 allowed us to ensure
that we were using version control through Git properly and that it would allow us to edit
GRNsight as necessary.

Once our environments were set up, we had to obtain an understanding of the task ahead
of us through research and collaboration. The Week 9 assignment provided us with a guideline

on how to implement the process for extracting the XML/JSON data from the particular website.



We decided to have the code return an object while the other teams could take parts of this object
for them to use. This object would consist of data pulled from NCBI, UniProt, SGD, Ensembl,
and JASPAR. The JASPAR team needed an understanding of how this object would work in

order for them to integrate their code into ours.

inelnfo),

From this baseline, we then focused on interacting with the API’s that were provided
from the Week 9 assignment. At the beginning, we implemented these API calls outside of the
context of the GRNsight project, using ES6 language constructs in order to represent the
functions more succinctly. This allowed us to replicate the results of the Week 9 bash commands
by following a sequential paradigm, without fully sacrificing the control of our code, through the
use of javascript’s async and await. We quickly realized, however, that GRNsight was operating
on ESS; a version of javascript that is devoid of many of the newer language changes, in
particular: the introduction of async and await. With this shift, we needed to backport our code to
instead work on an ES5 project, which was an unexpected development. Thankfully, however
jQuery provides a nice interface for asynchronous programming in its deferred objects. Through
these, we were able to adapt our code into a form that allowed us to more easily make the
changes that we needed in order to adapt to the constraints of the GRNsight project. An example

of one of the functions that we ended up with can be seen below.
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While we setup the data extraction, Quality Assurance provided us with a list of the data we
needed to find within the XML/JSON and extract. Once we had the data coming from where we
wanted it to, it was now a matter pulling these selected pieces of data. Extracting the XML was a
challenge because while some of the data could easily be accessed by calling the name of an
XML tag, clever manipulation of the data was necessary to retrieve everything. Some data could
not be called by tag for example, so we had to manipulate the Document Object Model with the
understanding that you could call nodes by their relation to another node. This was seen in
Uniprot below, when to get the proteinType for the web page, we had call the necessary node by

its relation to another node.

eastmineInfo, ensemblInfo, jasparInfo) {




In other cases, the data was not directly given in one XML tag, but several. The genomic
sequence, for example, displayed as “Chromosome: XVI; NC 001147.6 (159548..160594)” on

NCBI is given as the following XML code:

LrFAmM><f Mim>
v <GenomicInfo>

¥ <GenomicInfoType>
<ChrLoc»XVI</ChrlLocs
<ChraccVer:>NC_eB1148.4</ChriccVers
<Chrstart»919388<,/Chrstarts
<ChrStop>920486</Chrstop>
<ExonCount>»1</ExonCount>

</GenomicInfoType>

Thus, in order to have the data appear as it does on NCBI, it requires the extraction of several

tags and returning of a new string object below.

In addition to selecting XML tags, we had to implement the use of regular expressions to
eliminate any sort of code that resided within the XML tags in order to get a clean string.
Another particular challenge was when the desired data for multiple points could be located in a
single XML tag , such as the case when the LOCUS Tag and Other Aliases were found in the
following XML tag: <OtherAliases>YPR191W, COR2, UCR2</OtherAliases>. To overcome
this challenge, it was necessary to take the data as a string, split the string into an array, and

return only parts of the array needed for the desired data. The extraction of JSON data was more

10



straightforward, as we had to implement values of the JSON objects given to us as elements of
our own object. Ultimately, this was the last portion of work that we needed to do in order to

bring the project to completion.

Results/Discussion.

Data Analyst.

The original excel file provided by Dr. Dahlquist’s lab on yeast and cold shock had 4
replicates for each time point, totaling in 20 data points. There was a total of 6189 genes used in
this experiment and included in the excel spreadsheet. 6652 cells were replaced because they
contained no data. The purpose of the within-stain ANOVA test is to determine if any genes had
a gene expression change that was significantly different than zero at any time point. The
ANOVA p values, Bonferroni p value, and Benjamini & Hochberg p values can be seen in this

table below.
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Table 1: This table shows the results from the ANOVA run on the deletion strain dGLN3 in
comparison to the wild type strain. The decreasing p values increase the significance of the
gene expression change. The lower the p value, the more confidence there is with the data.

ANOVA WT dGLN3
p < 0.05 2528 (40.85%) 2135 (34.50%)
p <0.01 1652 (26.70%) 1204 (19.45%)
p < 0.001 919 (14.85%) 514 (8.31%)
p < 0.0001 496 (8.01%) 180 (2.91%)
Benjamini & 1822 (29.44%) 1185 (19.15%)

Hochberg-corrected p < 0.05

Bonferroni-corrected

248 (4.01%)

45 (0.73%)

p <0.05

These multiple p values allow for the stringency of the data, which increases the significance of
the gene expression change. I performed 6189 hypothesis tests, expecting to see a gene
expression change for at least one of the timepoints by chance in about 5% of our tests, or 309
times when using a p value of < 0.05. Since I have more than 309 genes that pass this cut off, |
know that some genes are significantly changed. However, I don't know which ones. The final
outcome of this data shows that 45 genes out of 6189 total genes had a p value of < 0.05,

meaning that they are significant. Specifically, this means that 0.73% of the data was significant.
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After retrieving the ANOVA results, the Bonferroni and Benjamini & Hochberg p values
were filtered to only show the significant values. This resulted in 1258 genes after the filtering.
After inputting these values into STEM, 7 significant profiles representing clusters of genes were

presented. Figure 1 below shows the results.

Clusters ordered based on number of genes and profiles ordered by significance (default)
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Figure 1: This figure illustrates the 7 significant profiles generated
from STEM. Each profile represenis a cluster of genes showing the
same temporal expression pattern.
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For our project, we focused on Profile #45 due to its upregulation and downregulation
pattern as well as the number of genes associated with this profile and its significance. Each
profile is integrated with a GO list and a gene list that yields its information from other
databases. Profile #45 has 406 genes assigned, 29.9 genes expected, and a p value of 0.00
meaning it is significant. Figure 2 illustrates how at the first time point, 15 minutes, all the genes
were up regulated in the same pattern, then around time point 60, were all down regulated until
they were stabilized. Since time point 60 was when the cold shock stopped and heat was then
applied to bring the temperature to normal level, we can conclude that the genes in this cluster
are upregulated when exposed to cold shock and are downregulated or leveled off when exposed

to hot temperatures.

|| Profile 45 - O X

Profile #45:(0,2,2,1,-1,0)
406.0 Genes Assigned; 25.9 Genes Expected; p-value = 0.00 (significant)

g Expression Change
i)

[ ProfleceneTable | [ ProflecOTanle |

Figure 2: This figure shows the expression pattern of genes in profile 435 that was
generated from STEM. The axes are expression change over time. Each line corresponds
to a gene and all these genes were clustered based off their similar expression pattern.
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A preview of the GO list can be seen in Table 2. Three GO terms represent 3 possible
functions that the genes in profile #45 have in common. These terms all relate to the mechanism
of gene expression. The first GO term shows that there are 189 genes assigned in this cluster to
the function of gene expression, with a corrected p value of <0.001. This means that the number
of genes enriched were significantly more than what was expected. Gene expression is defined as
the process in which a gene's sequence is converted into a mature gene product or products
(proteins or RNA). This includes the production of an RNA transcript as well as any processing
to produce a mature RNA product and the translation of that mRNA into protein (Consortium,
2017). This ultimately affects the amount of protein produced which affects the upregulation or
downregulation of a gene. The more gene expression that takes place, the more that gene is
upregulated.

RNA processing, the second GO term, is defined as any process involved in the
conversion of one or more primary RNA transcripts into one or more mature RNA molecules
(Consortium, 2017). This is similar to the GO term gene expression in that with the increased
production of RNA processing, more genes relating to that function are being produced, meaning
that those genes are being upregulated. There are 115 genes assigned to this function with a
corrected p value of < 0.001, meaning that the number of genes enriched were significantly more
than what was expected.

RNA phosphodiester bond hydrolysis is defined as the RNA metabolic process in which
the phosphodiester bonds between ribonucleotides are cleaved by hydrolysis (Consortium, 2017).
Because there is an upregulation of the hydrolysis, the expression of the genes that code for that

RNA will be underproduced due to the breakdown of those bonds. This process can be used to
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downregulate a certain gene expression. There are 37 genes assigned to this function in the
cluster with a corrected p value of <0.001, meaning that the number of genes enriched were
significantly more than what was expected.

When the genes in this cluster were exposed to cold shock, they responded by
upregulating gene expression, RNA processing, and RNA phosphodiester bond hydrolysis. This
means that when exposed to extremely stressful environments, the genes respond by expressing
more genes through the production of more proteins, developing more mature RNA molecules
which yields more proteins, and increasing the breakdown of RNA bonds through hydrolysis,
possibly because the genes associated with this function must be downregulated for the survival
of the cell during cold shock. Previous research has found that there are clusters of transcription
factor genes that are upregulated when exposed to cold shock. These genes include functions like
mRNA transcription, RNA processing, and protein folding genes, which correlates to our

findings here (Sahara et. at., 2001).

Table 2: This table shows the Gene Ontology (GO) list for profile #45 showing the gene functions in this
cluster. Only 3 are shown here but the complete list can be seen in the deliverables section of Dina
Bashoura's Week 10 Electronic Noteboolk.

Category Name #Genes #Genes #Genes #Genes p-value Corrected Fold
Category  Assigned Expected  Enriched p-value

Gene expression 382 189.0 123.3 +65.7 1.8E-17 <0.001 1.5

RNA processing 170 115.0 54.9 +60.1 1.7E-24 <0.001 2.1

RNA 50 37.0 16.1 +20.9 8.0E-10 <0.001 23

phosphodiester

bond hydrolysis
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Yeastract was then used to interpret which transcription factors regulate profile #45°’s
cluster. Yeastract uses a database of transcription factors and compares them to the ones that you
input, then generates a list showing which ones are significant and which are not. The results
gave us a list of 30 significant candidates that could be transcription factors regulating that
cluster. From those 30, 15 were chosen based on their percent in user set, their % in Yeastract,

and their p values. The results are shown in Table 3.

Table 3: This table shows the 15 ranscription faciors and their p values chosen from the 30 sienificant
anes that Yeastract gave as candidates for regulating profile #435.

Transcription ACE2 CINS GLN3 HAP4 MSN2 PDRI1 PDR3

Factors

P - Values 6.7E-14 0.6462266 | 1.21E-13 0.004451 0 6.245E-11 | 8.92E-13

Transcription = SFP1 SWI5 UME®6 YAPI1 YHP1 | YLR278C | YOX1 ZAP1

Factors

P - Values 0 2.782E-10 | 3.323E-1 | 2.84E-13 0 3.666E-10 0 8.553E-06
1

Finally, these transcription factors were formatted and put into GRNsight to visualize the
network of the gene interaction. Figure 3 shows the GRNsight output network in black and

white, showing the unweighted version of which transcription factor interacts with the other.
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Figure 3: This figure shows the network of transcription factors. Each node represents a gene or
transcription factor and each line represenis an edge or the way that it interacts with other genes.

Figure 4: This figure shows the network of transcription factors. Each node represents a gene
or transcription factor and each line represents an edge or the way that it interacts with other
eenes. The thickness of the line represents the magnitude of the interaction. The pink lines
represent upregulation and the blue lines represent downregulation.
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The network in Figure 4 shows the weighted upregulation and downregulation patterns
and interactions of the 15 chosen transcription factors in relation to each other. Visually, you can
see that PDR1 to HAP4 has the thickest pink edge, meaning that PDR1 is upregulated and
interacts with HAP4 in the network. HAP4 also has thick blue lines connecting to it, meaning
that it is also downregulated by other genes like YAP1 and MSN2. There are more blue edges
than pink edges, meaning that in this network, there are more transcription factors being

downregulated than upregulated.

Quality Assurance.

The information that was chosen from each database is presented below in Table 4. The
reasons for why the information was considered important is given in the far right column. The
information that was most important or relevant had to do with identifying the gene,
characteristics of the gene, and connecting the gene to other gene/cell functions. Of all the
information presented on the five databases, this information in Table 4 is believed to be most
valuable to researchers who would use GRNsight to learn more about a specific gene and its

influences and effects on other genes.

Table 4: Table of content that was chosen from the five databases. The far right column gives
the reason why it was chosen and considered important.

Database Information Why?

NCBI Gene ID Identifier used by this
database; helps user easily
find it for further research

Locus Tag Another identifier for the
gene that helps users easily
find it for further research
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Also Known As

Other names it is referred to
as, so users will know these
other names are referring to
the same gene

Chromosome Sequence

Shows the location on a
chromosome and the related
genes/close neighbors

Genomic Sequence

Shows the gene’s location in
the genome and the related
genes/close neighbors

UniProt

Gene [D

Identifier used by this
database; helps user easily
find it for further research

Protein Sequence

Shows the proteins that make
up the gene

Protein Type/Name

Tells user which protein it
controls/influences

Species

Tells user with which
organism the gene is involved

Ensembl

Gene ID

Identifier used by this
database; helps user easily
find it for further research

Description/Function

Tells the user about the genes
role(s) and its effects on the
cell/organism

DNA Sequence

Shows which nucleotides
code for the particular gene

Gene Location

Tells users where the gene is
located and on which
chromosome

Gene Map

Shows the gene’s location in
the genome and the related
genes/close neighbors

SGD

Gene ID (standard name,
systematic name, SGD ID)

Identifier used by this
database; helps user easily
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find it for further research

Regulation (regulators,
targets)

Gives the users
transcriptional information
about the gene, including
binding motifs, genes it
regulates, and genes that
regulate it

Interaction (total interactions,
physical interactions, genetic
interactions)

Tells users how the gene
interacts with other genes
physically or genetically

Gene Ontology (summary,
molecular function, biological
process, cellular component)

Provides the GO Annotations,
telling user about the gene
and its gene product

JASPAR Matrix ID Identifier used by this
database; helps user easily
find it for further research

Class Tells users with which aspect
the gene is involved
Family Gives user further

information about the gene’s
relationship/role in the cell

Sequence Logo

Gives users a visualization of
the frequency of nucleotides
in the gene and which
nucleotides in an order are
more likely to code for the
gene

Frequency Matrix

Gives user data about which
nucleotides are most frequent
in the gene
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Coders.

As discussed above, our final deliverable was a function that can be called through a
provided api object’s getGenelnformation function. Said function receives a gene symbol as
input, and returns a jQuery deferred object which resolves to an object containing the data from
the 5 different databases. This object is structured in JSON, and information from a given
database can be retrieved through the object’s property that matches the database’s name.

This process required us to interact with data from a number of perspectives. First, we
needed to understand how our classmates each individually retrieved information from the
databases they were assigned in Week 9, which required individually going through their
assignments and noting the important links, references, and URLSs that were used across multiple
instances of the same database groups. Once we had a solid understanding of how the data was
being made available to us, we then were able to scope out how we would translate this data to
instead be made available in javascript, as described above. Dealing with the ES6 vs ES5 debacle
required an understanding of the differences between the two versions, and learning to use the
data retrieval functionality of jQuery efficiently. Finally, through efficient communication we
were able to remain in sync with the Jaspar team, and onboard them onto the framework that we
had established for the getGenelnformation function. All in all, this was a cross-disciplinary
project that required a lot out of us, but granted us much knowledge in return.

There are a number of properties from the SGD and Ensembl databases that were
requested of us, but that we were also unable to retrieve given the data sources that we interacted
with from the results of Week 9’s homework assignment. Such data sources can be seen below,

tagged with the comment: “Information unavailable via regular API”.

22



var parseYeastmine = function (data) {
return {

sgdID: o
standardName:
systematicName:
regulators: "N/A",
targets: "N/A",
totalInteractions: "N/A",
affinityCaptureMS: "N/A",
affinityCaptureRNA: "N/A",
affinityCaptureWestern: "N/A",
biochemicalActivity: "N/A",
colocalization: "N/A",
reconstitutedComplex: "N/A",
twoHybrid: "N/A",
dosageRescue: "N/A",
negativeGenetic: "N/A",
phenotypicEnhancement: "N/A",
phenotypicSuppression: "N/A",
syntheticGrowthDefect: "N/A",
syntheticHaploinsufficiency: "N/A",
syntheticLethality: "N/A",
syntheticRescue: "N/A",
geneOntologySummary:
molecularFunction: "N/A",
biologicalProcess: "N/A",
cellularComponent: "N/A",

var parseEnsembl = function (data) {

return {
ensemblID:
description: data
dnaSequence: "N/A",
geneLocation: "N/A",
geneMap: "N/A",
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Conclusion.

As discussed in the Week 12 Journal Club Presentation regarding chapter five of Paul
Ford’s What is Code?, the process of developing software is more intricate than simply writing
code. Just as Ford explained the complications of developing something perceived to be simple
like email validation, this project taught us that something as trivial as displaying text requires
collaboration and contains complications throughout the development process. Ford enlightens
the reader that although languages will, over time, have implementations in a broader scope, the
overall dogma of software development will remain with a significant degree of complexity in
development. This was displayed perfectly in our task; despite the use of jQuery making the
extraction and parsing of data easier, a significant degree of work went into proper use of these
“newer” technologies.

Sahara, et al. (2002), there was a clear trend for the genes to respond to the cold shock by
improving their transcription abilities. For example, the genes controlling transcription factors
and RNA processing were up regulated. This helps the cell produce more proteins to maintain
the integrity and basic functions of the cell. The analysis of the data from Dr. Dahlquist’s lab
showed similar results. Profile #45 responded in a similar way, up-regulating the genes that had
roles in transcription, including RNA processing and RNA phosphodiester bond hydrolysis.

In the future, it would be ideal to make all of the information accessible from one page.
This would make it much easier for the user to research the genes of interest. Moreover, once it
has been running for a while, research could be done to see what information is actually used by

the researchers and/or which information they would prefer to have. The research that has been
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done in this project to select the information that is currently displayed is sufficient and will be
good to get it started. However, getting the opinions of the actual users allows for the
information to be targeted to the actual users of GRNsight. This way, it is much more efficient
for researchers to use, so they do not have to locate other information in several different
databases. GRNsight can be a single stop for them.

Overall, in this project, initial research was done to get to know more about the subject
and learn about gene interactions and yeast gene responses to cold shock. Raw data from Dr.
Dahlquist’s lab was then taken and analyzed. This provided more understanding of how the data
is processed and what it means. Opening the data on GRNsight showed how useful the website
can be for visualizing the meaning of the data and connections between the genes. This process
of becoming more familiar with the research made the gaps in the current knowledge apparent.
Creating a way for GRNsight users to easily access further information about the genes helps
them to make the researching process more efficient, and the gene regulatory networks will help
them to see the interactions and influences between genes more easily to learn more about them
and which genes control genome in responses to stress. Adding this feature to GRNsight makes
the researching process much easier and more organized, helping to fill the gaps of what is

known about gene interactions and influences.
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