
JASPAR information is part of a new feature of GRNsight that increases the application's ability to interpret the results of gene profiles

Antonio Porras - Department of Biology
Eddie Bachoura - Department of Computer Science
Quinn Lanners - Department of Mathematics
Simon Wroblewski - Department of Computer Science

Biological Databases CMSI/BIOL 367-01 December 12, 2017

Outline

- GRNsight maps the relationships between transcription factors of gene profiles constructed from microarray data
- JASPAR the Friendly Ghost team members worked simultaneously on separate but related tasks
- Relationships were visualized between the most significant transcription factors in Profile 22 of dZAP1
- JASPAR provided integral information regarding transcription factors for the added feature to GRNsight
- Future work includes ensuring robust functionality and adding to the information available for the genes on GRNsight

Outline

- GRNsight maps the relationships between transcription factors of gene profiles constructed from microarray data
- JASPAR the Friendly Ghost team members worked simultaneously on separate but related tasks
- Relationships were visualized between the most significant transcription factors in Profile 22 of dZAP1
- JASPAR provided integral information regarding transcription factors for the added feature to GRNsight
- Future work includes ensuring robust functionality and adding to the information available for the genes on GRNsight

Cold shock has been found to have an impact on the expression of the yeast genome

- Saccharomyces cerevisiae is an ideal model organism for the studying of gene expression.
- The effect of environmental stressors on gene expression is a common theme to study in genomics.
- Extreme cold shock (30°C to 4°C) has been found to significantly impact the expression of over 100 genes

(Becerra, et. al., 2003).

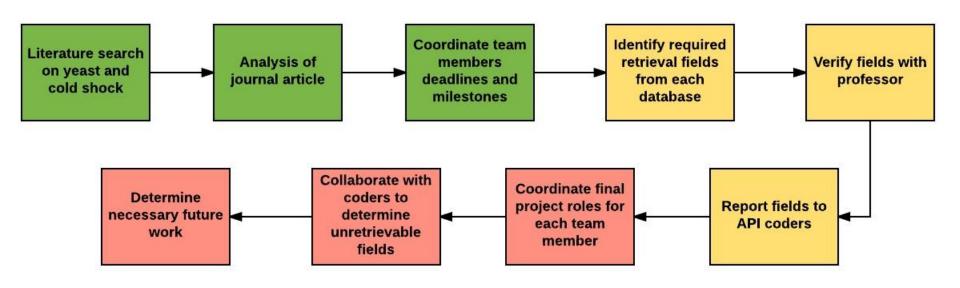
Studying gene profiles provides information on how cold shock effects related genes

- Gene expression profiles can be created from microarray data.
- Gene profiles create a snapshot of all of the genes significantly impacted by a particular stressor.

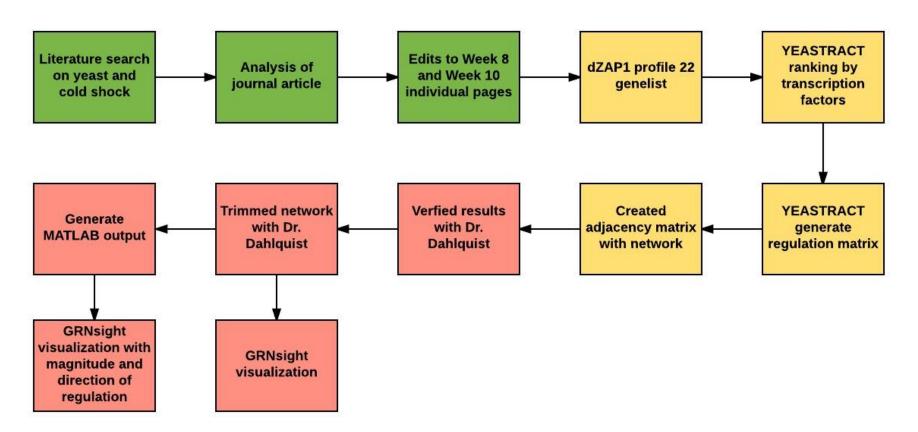
- Allowing for the clumping of genes that perform related functions and/or are controlled by related regulators
- It is difficult to determine which transcription factors belong in, and play an important role in, the gene regulatory network.

GRNsight allows for the visualization of the relationships between transcription factors

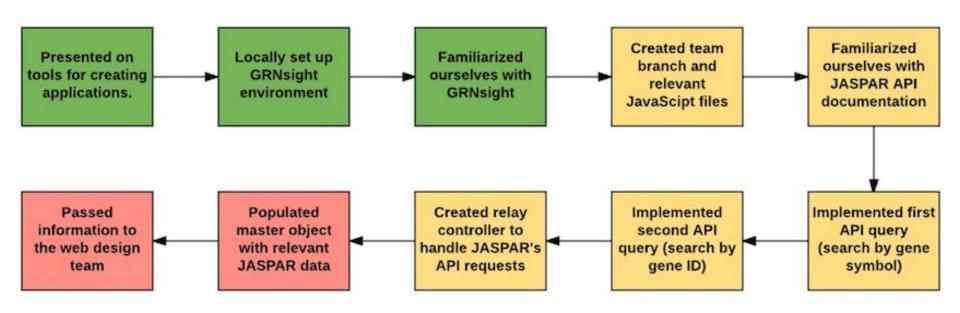
- The application GRNmap can be run on MATLAB to mathematically model and simulate gene regulatory networks (About GRNsight).
 - However, outputted data is in the form of tabulated data
- GRNsight allows for visualization of this data in an interactive map (About GRNsight).
 - Nodes: genes
 - Edges: regulatory relationships


JASPAR Database offers crucial information regarding transcription factors

- General information regarding each gene would improve the functionality of GRNsight.
- Important information regarding genes can be generally obtained from five databases:
 - Ensembl
 - NCBI
 - SGD
 - UniProt
 - JASPAR
- JASPAR offers information tailored specifically for transcription factors.

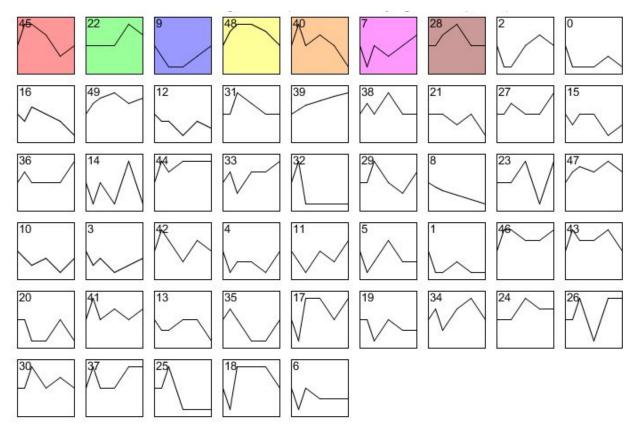

Outline

- GRNsight maps the relationships between transcription factors of gene profiles constructed from microarray data
- JASPAR the Friendly Ghost team members worked simultaneously on separate but related tasks
- Relationships were visualized between the most significant transcription factors in Profile 22 of dZAP1
- JASPAR provided integral information regarding transcription factors for the added feature to GRNsight
- Future work includes ensuring robust functionality and adding to the information available for the genes on GRNsight

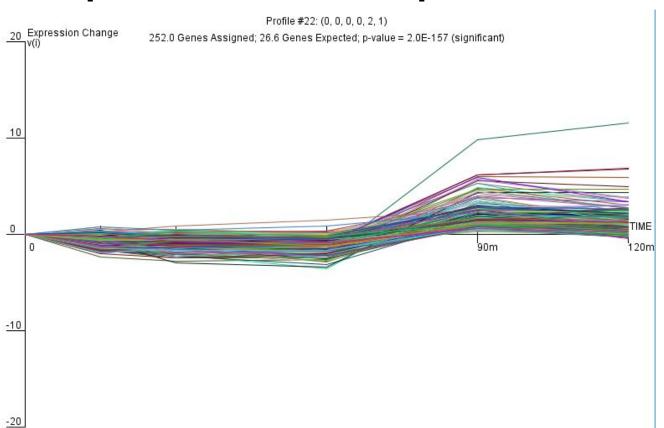

Quality Assurance/Project Manager coordinated team activity and outlined necessary deliverables

Data Analyst interpreted STEM results of dZAP1 and generated a network for GRNsight visualization

Coders wrote code to retrieve data from JASPAR and delivered results to the design team


Outline

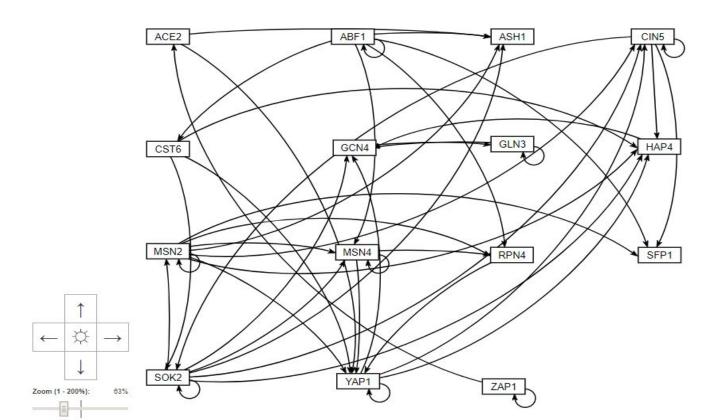
- GRNsight maps the relationships between transcription factors of gene profiles constructed from microarray data
- JASPAR the Friendly Ghost team members worked simultaneously on separate but related tasks
- Relationships were visualized between the most significant transcription factors in Profile 22 of dZAP1
- JASPAR provided integral information regarding transcription factors for the added feature to GRNsight
- Future work includes ensuring robust functionality and adding to the information available for the genes on GRNsight


Genes had expression change significantly different than zero at any timepoint

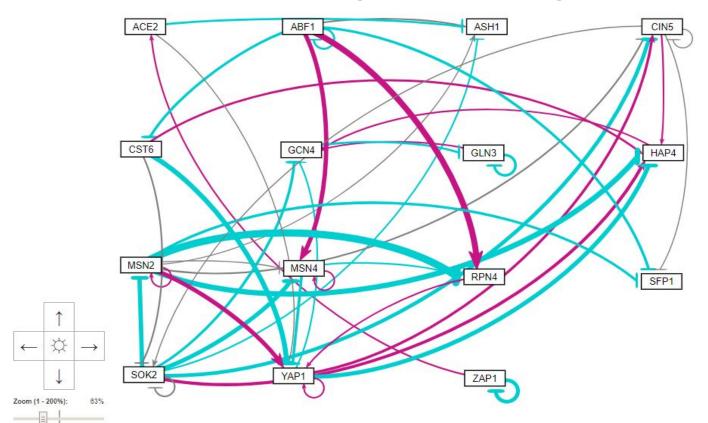
ANOVA	WT	dZAP1	
p < 0.05	2528 (40.85%)	2485 (40.2%)	
p < 0.01	1652 (26.70%)	1609 (26.0%)	
p < 0.001	919 (14.85%)	885 (14.3%)	
p < 0.0001	496 (8.01%)	457 (7.4%)	
Benjamini & Hochberg-corrected p < 0.05	1822 (29.44%)	1766 (28.5%)	
Bonferroni-corrected p < 0.05	248 (4.01%)	209 (3.4%)	

Seven significant expression profiles were generated using high-level analysis

Profile #22 displayed no significant change in expression until timepoint 60m


GOlist provided the nature and expression of significant genes in Profile #22

Category Name	#Genes Category	#Genes Assigned	#Genes Expected	#Genes Enriched	p-value	Corrected p-value	Fold
cytoplasm	1238	215	174.8	40.2	3.00E-10	<0.001	1.2
oxidoreducta se activity	131	45	18.5	26.5	8.10E-10	<0.001	2.4
cellular response to oxidative stress	51	25	7.2	17.8	1.50E-09	<0.001	3.5


YEASTRACT generated and ranked 49 transcription factors

Transcription Factor	ABF1	ACE2	ASH1	CIN5	CST6	GCN4	GLN3	НАР4
p-value	1.58E-07	1.69E-08	1.13E-09	4.62E-05	2.14E-05	5.48E-08	0.513787	2.12E-08
Transcription Factor	MSN2	MSN4	RPN4	SFP1	SOK2	YAP1	ZAP1	
p-value	1.48E-11	4.73E-12	2.95E-13	9.66E-10	1.91E-09	1.39E-09	2E-15	

GRNsight generated a visual representation of the regulatory network

Weighted regulation map aided in visualizing direction and magnitude of regulation

Outline

- GRNsight maps the relationships between transcription factors of gene profiles constructed from microarray data
- JASPAR the Friendly Ghost team members worked simultaneously on separate but related tasks
- Relationships were visualized between the most significant transcription factors in Profile 22 of dZAP1
- JASPAR provided integral information regarding transcription factors for the added feature to GRNsight
- Future work includes ensuring robust functionality and adding to the information available for the genes on GRNsight

Setup GRNsight environment locally

- Coders cloned the files that make up the GRNsight application to our own machines.
- Ensured local GRNsight is functioning properly with <u>npm</u> <u>install</u> and <u>npm start</u>
- Became familiar with GRNsight and created new files to mark where we would implement the new feature
- Studied JASPAR's API documentation to understand which calls we would be using

getGeneInformation() function searches each database and compiles the data from each into an object

- Integrated knowledge of the JASPAR API documentation into the new function getGeneInformation()
- Created the function getJasparInfo() which would contain the relevant API calls
- Identified the gene information that needed to be called and returned from the JASPAR API
- Wrote an and integrated the getJasparInfo() function

```
var getJasparInfo = function (geneSymbol) {
···return $.get({
url: "/jaspar/api/v1/matrix/?tax id=4932&format=json&search=" + geneSymbol,
.....dataType: "json",
·····beforeSend: function (xhr) {
.....xhr.setRequestHeader("content-type", "application/json");
....}).then(function (data) {
return (data.count === 0 ? {} :
••••••••$.get({
url: "/jaspar/api/v1/matrix/" + data.results[0].matrix_id,
.....dataType: "json",
·····beforeSend: function (xhr) {
   .....xhr.setRequestHeader("content-type", "application/json");
. . . . . . . );
····});
```

Second API call returns the query's gene object, using the matrix ID retrieved from the first call

After finishing the API call function, we were getting an "Access-Control-Allow-Origin" error

- On JASPAR's documentation page for their API, they say that they support cross-origin.
- This led us to think that we were calling their API wrong.

CORS requests

JASPAR API also support Cross-Origin Resource Sharing (CORS), which enable users to make cross-origin API requests directly from their web application.

 The easiest solution was to implement a relay controller that would run with GRNsight and control all of the calls to the JASPAR database.

This function takes the JASPAR response and pulls from it the relevant information that we would like to use for GRNsight.

```
▼ { jaspar: {...}, ncbi: {...}, emsembl: {...}, uniprot: {...}, sgd: {...}} 🙃
  ▶ emsembl: {ensemblID: "YGL073W", description: "Trimeric heat shock transcr:
 ▼ jaspar:
   class: ["Heat shock factors"]
   ▶ family: ["HSF factors"]
   ▶ frequencyMatrix: {A: Array(8), C: Array(8), T: Array(8), G: Array(8)}
     jasparID: "MA0319.1"
     sequenceLogo: "http://jaspar.genereg.net/static/logos/svg/MA0319.1.svg"
   ▶ proto : Object
  ▶ ncbi: {ncbiID: "etc.", locusTag: "<OtherAliases>YGL073W", alsoKnownAs: Arı
  ▶ sgd: {sgdID: "S000003041", standardName: "HSF1", systematicName: "YGL073W'
  uniprot: {uniprotID: "<name xmlns="http://uniprot.org/uniprot">HSF YEAST<,</pre>
```

Our team, along with the *Gene hAPI* team, wrote the function that returns *this object*, which is then passed on to the page design and integration teams.

Outline

- GRNsight maps the relationships between transcription factors of gene profiles constructed from microarray data
- JASPAR the Friendly Ghost team members worked simultaneously on separate but related tasks
- Relationships were visualized between the most significant transcription factors in Profile 22 of dZAP1
- JASPAR provided integral information regarding transcription factors for the added feature to GRNsight
- Future work includes ensuring robust functionality and adding to the information available for the genes on GRNsight

Future work will include additional testing and modification and additions to retrieved data

- Isolate the code from the server using Sinon
 - Mock response
- Modify the code to check for any servers that are not responding
 - If one is not responding, the code should mark that database's result as undefined.
- Identify unretrievable data fields
 - Find workaround to retrieve these fields
 - Find other database to retrieve this same information

Conclusion

- GRNsight visualizes a system of relationships between transcription factors.
 - Which can be used to better understand cold shock in yeast
- JASPAR the Friendly Ghost team members both utilized and enhanced GRNsight functionality to analyze genomic data.
- GRNsight visualization of the significant transcription factors in Profile 22 of dZAP1 provided further insight on the effect of cold shock on yeast.
- JASPAR information was retrieved as part of a larger getGeneInformation() function.
- Future work will include further testing and the addition of unretrievable desired information available for genes.

Acknowledgements

- Thank you to both Dr. Dahlquist and Dr. Dionisio for teaching this course and providing support throughout the semester.
- The JASPAR The Friendly Ghost team for the collaborative effort
- The Departments of Computer Science and Biology at LMU
- The class for being a wonderful audience

References

- About GRNsight. (2017, June 2). *GRNsight*. Retrieved on December 7, 2017, from http://dondi.github.io/GRNsight/about.html
- About JASPAR. (2017). *JASPAR*. Retrieved on December 7, 2017, from http://jaspar.genereg.net/about/
- Anonymous. (2017, February 15). /g/ Technology. Warosu.org.
 Retrieved on December 11, 2017, from
 https://warosu.org/g/image/VIAIA6TQYmgswrNunM19HQ
- Becerra, M., Lombardia, L.J., Gonzalez-Siso, M.I., Rodriguez-Belmonte, E., Hauser, N.C., & Cerdan, M.E. (2003). Genome-wide analysis of the yeast transcriptome upon heat and cold shock. *Comparative and Functional Genomics*, 4(4), 366-375. doi: 10.1002/cfg.301
- File:Npm-logo.svg (2017, February 27). WikiMedia Commons. Retrieved on December 11, 2017, from https://commons.wikimedia.org/wiki/File:Npm-logo.svg

References continued

- Gene Ontology Consortium. (2017). The Gene Ontology. Retrieved November 29, 2017, from http://geneontology.org
- LMU BioDB 2017. (2017). Week 15. Retrieved December 05, 2017, from https://xmlpipedb.cs.lmu.edu/biodb/fall2017/index.php/Week_15
- LMU BioDB 2017. (2017). JASPAR the Friendly Ghost. Retrieved
 December 05, 2017, from
 https://xmlpipedb.cs.lmu.edu/biodb/fall2017/index.php/JASPAR_the_Friendly_Ghost
- Nature. (2014). Scientists Can Study an Organism's Entire Genome with Microarray Analysis. Retrieved on December 9, 2017, https://www.nature.com/scitable/topicpage/scientists-can-study-an-organism-s-entire-6526266

References continued

- Short Time-series Expression Miner (STEM). (2006). Retrieved November 29, 2017, from http://www.cs.cmu.edu/~jernst/stem/
- Sinon.JS. (2017). Retrieved on December 11, 2017 from http://sinonjs.org/
- Teixeira, M. C., Monteiro, P. T., Guerreiro, J. F., Gonçalves, J. P., Mira, N. P., dos Santos, S. C., ... & Madeira, S. C. (2013). The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic acids research, 42(D1), D161-D166.
- Tyranuer, E. (2017, October 23). WT_p-value_slide_ET [PPTX]. Los Angeles: Emma Trynauer.