Potassium Starvation in Yeast Triggers Changes in the Expression of Genes Related to Different Metabolic and Biosynthetic Pathways

Aby Mesfin, Jonar Cowan, David Ramirez, Mihir Samdarshi, Christina Dominguez Loyola Marymount University BIOL 367-01 December 10, 2019

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple significant changes found in genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database
- Network Discovered

● **Potassium crucial to cell**

- Raw Data Required Manual Input
- Multiple significant changes found in genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database
- Network Discovered

Potassium is extremely important to normal cell function

- Potassium is the most abundant cation
- Without potassium balance life threatening conditions might occur
- Potassium homeostasis is required to regulate the cell
- Potassium helps to establish membrane potential
- Potassium limits growth when ammonium is the nitrogen source
- Ammonium toxicity is increased under high-potassium conditions
	- Caused by over-expression of ammonium transporters

Potassium is extremely important to normal cell function

- "**The Short-Term Response of Yeast to Potassium Starvation**" by Barreto, L., Canadell, D., Valverde‐Saubí, D., Casamayor, A., & Ariño, J.
	- Study looked at potassium starvation in yeast cells for 10, 20, 40, 60, and 120 minutes in replicates of four
		- Found changes in gene expression impacted by potassium starvation
			- Oxidative Stress
			- Methionine/Cysteine Biosynthesis
			- **Cyclin Levels**
			- Septin Rings
- **Retrograde Pathway**
- Methylglyoxal production
- **Trehalose**
- No studies that directly correlated to work on potastan plistarvation prior to this study

Potassium is extremely important to normal cell function

- GRNmap and GRNsight help visualize the relationship between transcription factors during potassium starvation
- MS Access database will be used for present and future use of understanding and exploring new information from microarray data

● Potassium crucial to cell

● **Raw Data Required Manual Input**

- Multiple significant changes found in genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database
- Network Discovered

Complications with the Raw Data

- Potassium crucial to cell
- Raw Data Required Manual Input
- **Multiple significant changes found in genes**
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database
- Network Discovered

More than 5% of the Genes Had A Significant Change in Gene Expression

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple Significant Change Found in Genes
- **Eight Significant Gene Clusters Observed**
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database
- Network Discovered

Eight Significant Gene Clusters Observed

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple Significant Change Found in Genes
- Eight Significant Gene Clusters Observed
- **Profile 39 was most significant**
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database
- Network Discovered

Gene Plot of Profile 39 Displayed Significant Changes at Every Time-Point

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple Significant Change Found in Genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- **Top Transcription Factor Genes Serve Importance in Cell**
- 12 Gene Network
- Database
- Network Discovered

F/C in Genes Associated with Cellular Functions

Top 16 Significant Transcription Factor Genes From Yeastract

RPN4, PDR1, PDR3, HSF1 Removed

- Fold change data for these genes was not measured in the study
- Empty query results

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple Significant Change Found in Genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell

● **12 Gene Network**

- Database
- Network Discovered

Regulatory Network Established Relationship between 12 Genes

Regulatory Network Established Relationship between 12 Genes

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple Significant Change Found in Genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network

● **Database**

• Network Discovered

Database of DNA microarray data was created in Microsoft Access using existing database

Diagram describes MS Access database schema

Two new tables were added containing data source metadata

samples to data and references Tables

Field and table names were standardized across gene expression data tables

Gene Expression Data Table Name

Format: [Author 1 Surname] [Year] [wt or mutant] log2 expression Example: Barreto 2012 wt log2 expression

Gene Expression Data Field Name (in Table)

Format: [Yeast Strain]_LogFC_t[Time Point]-[Replicate Number] Example: Barreto 2012 wt log2 expression

- Potassium crucial to cell
- Raw Data Required Manual Input
- Multiple Significant Change Found in Genes
- Eight Significant Gene Clusters Observed
- Profile 39 was most significant
- Top Transcription Factor Genes Serve Importance in Cell
- 12 Gene Network
- Database

● **Network Discovered**

A Gene Regulatory Network Was Induced in the Yeast by Potassium Starvation

- Potassium is proven to play crucial role in cell function
- Raw data needed multiple edits including deletion of aliases
- More than 5% of the genes had a significant change in gene expression
- Eight significant gene clusters
	- \circ Profile 39 \rightarrow most significant
	- Significant time points for every change
- Important relationship observed between 12 genes
	- 4/16 original top transcription factors had no data
	- Genes related to roles in cellular function

Genes Highlighted in Our Regulatory Network Are Absent in the Article

- Genes in the Article are associated with:
	- Oxidative Stress
	- Methionine/Cysteine **Biosynthesis**
	- Cyclin Levels
	- Septin Rings
	- Retrograde Pathway
	- Methylglyoxal production
	- Trehalose metabolism
- Our Network highlights genes associated with:
	- Amino Acid Biosynthesis
	- Methionine/Cysteine **Biosynthesis**
	- **Hydrogen Sulfide Biosynthesis**
	- Molecular Function
	- Oxidation-Reduction Processes

Network and GO Definitions Are Substantiated by Previous Studies

- Bas1 is a regulator of the Histidine Pathway and Purine Biosynthetic Pathway (Daignan-Fornier, et al., 19920)
- Fhl1 functions as a suppressor of mutations in RNA Polymerase III (Hermann-Le Denmat, et al., 1994)
- Gat1 and Fhl1 involved in similar metabolic pathways (Bandhakavi, 2008)
- Gcn4 regulates gene expression during amino acid starvation in yeast (Natarajan, et al., 2010)
	- Activator of Gat1, Met4, Bas1
- Sok2 and Gis1 cooperate in regulating the promoter of TPK1 (Pautasso, Rossi, 2014)

Network and GO Definitions Are Substantiated by Previous Studies

- Met4 related to sulfur metabolism and binding factor both needed for transcriptional activation (Thomas et al., 2004)
- Hac1 and Mga2 found to be related in cellular function but exact relationship unknown (Covino et al. 2018)
- RIm1 delays the transition from G1 to S in cell cycle (Piccirillo et al., 2017)
- Yrr1 responds to oxidative stress (Nadai et al., 2016)
- Gls1 induces other metabolic genes in catabolic pathways (Wang et al., 2011)

Discovering More About Network

- Finding the 4 missing gene expressions
- How the 12 significant genes affect:
	- Other cations and the effects on the cell
	- Gene expression
	- Cellular Function in relation to homeostasis and membrane potential

Acknowledgments

Thank You Dr. Dahlquist LMU Biology Department BIOL 367 Classmates

References

Bandhakavi, S., Xie, H., O'Callaghan, B., Sakurai, H., Kim, D. H., & Griffin, T. J. (2008). Hsf1 activation inhibits rapamycin resistance and TOR signaling in yeast revealed by combined proteomic and genetic analysis. *PloS one*, *3*(2), e1598.

Barreto, L., Canadell, D., Valverde‐Saubí, D., Casamayor, A., & Ariño, J. (2012). The short‐term response of yeast to potassium starvation. Environmental microbiology, 14(11), 3026-3042. DOI: 10.1111/j.1462-2920.2012.02887.x

Covino, R., Hummer, G., & Ernst, R. (2018). Integrated functions of membrane property sensors and a hidden side of the unfolded protein response. *Molecular cell*, *71*(3), 458-467.

Daignan-Fornier, B., & Fink, G. R. (1992). Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. *Proceedings of the National Academy of Sciences*, *89*(15), 6746-6750.

Flick, K., Ouni, I., Wohlschlegel, J. A., Capati, C., McDonald, W. H., Yates 3rd, J. R., & Kaiser, P. (2004). Proteolysisindependent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. *Nature Cell Biology*, *6*(7), 634.

Guerfal, M., Ryckaert, S., Jacobs, P. P., Ameloot, P., Van Craenenbroeck, K., Derycke, R., & Callewaert, N. (2010). The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. *Microbial cell factories*, *9*, 49. doi:10.1186/1475-2859-9-49

Hermann-Le Denmat, S., Werner, M., Sentenac, A., & Thuriaux, P. (1994). Suppression of yeast RNA polymerase III mutations by FHL1, a gene coding for a fork head protein involved in rRNA processing. *Molecular and cellular biology*, *14*(5), 2905-2913.

References

Nadai, C., Treu, L., Campanaro, S., Giacomini, A., & Corich, V. (2016). Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. *Applied microbiology and biotechnology*, *100*(2), 797-813.

Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G., & Marton, M. J. (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. *Molecular and cellular biology*, *21*(13), 4347-4368.

Pautasso, C., & Rossi, S. (2014). Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity. *Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms*, *1839*(4), 275-287.

Piccirillo, S., Neog, D., Spade, D., Van Horn, J. D., Tiede-Lewis, L. M., Dallas, S. L., … Honigberg, S. M. (2017). Shrinking Daughters: Rlm1-Dependent G1/S Checkpoint Maintains *Saccharomyces cerevisiae* Daughter Cell Size and Viability. *Genetics*, *206*(4), 1923–1938. doi:10.1534/genetics.117.204206

Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., ... & Green, D. R. (2011). The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity*, *35*(6), 871-882.

Zhang, S., Skalsky, Y., & Garfinkel, D. J. (1999). MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. *Genetics*, *151*(2), 473-483.