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Introduction 

Potassium has been proven to be important to normal cell function. As the most abundant 

cation in the cell, it is involved in numerous different pathways that regulate the cell. Potassium 

is necessary for the maintenance of certain metabolic properties and metabolic pathways within 

cells. The cation, for instance, is responsible for generating the membrane potential that exists 

within cells, along with other cations such as sodium (Adrian, 1956). Without potassium balance, 

threatening conditions occur both to the cell. Potassium in the cell is also involved with other 

cations, such as ammonium. The effects of potassium have been shown to limit growth when 

ammonium is used as a nitrogen source as well as to induce ammonium toxicity under high 

potassium conditions due to over-expression of ammonium transports (Hess et al 2006). Due to 

potassium’s importance in the cell and relation to other cations, understanding the regulation of 

transcriptional responses in yeast in relationship to potassium levels is crucial. 

 This study analyzes the data presented in “The Short-Term Response of Yeast to 

Potassium Starvation” by Barreto L., Canadell, D., Valverde-Saubí, D., Casamayor, A., and 

Ariño, J., who examined how potassium starvation induces changes in gene expression and how 

it relates to cellular pathways. They studied potassium starvation in yeast cells for 10, 20, 40, 60, 

and 120 minutes and analyzed induction and repression of genes through microarray analsyis. 

The results of Barreto, et al. found that potassium starvation is linked to changes in the 

expression of genes associated with oxidative stress, methionine/cysteine biosynthesis, cyclin 

levels, septin rings, retrograde pathway, methylglyoxal production, and trehalose metabolism. 

The roles of these metabolic pathways in the yeast cell are essential to cellular function.  
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These findings of Barreto, et al. expanded on results from other studies.  A study on 

halotolerant yeast ​Debaryomyces hasenii​ found that potassium stress regulated amino acid 

synthesis, which could be involved in pathways of methionine/cysteine biosynthesis found in the 

Baretto results (Martinez et al 2012). Similarly, another study on the relationship between 

potassium limitation and its effects on the production of ammonium toxicity also links potassium 

starvation with changes in gene expression as seen in the Baretto study (​Hess et al 2006). 

Recently, septin has been documented to play an important role in the cell cycle and cell shape in 

yeast. Well-assembled septin cortex have been found to be necessary in developing yeast shapes. 

When septin is disorganized by the absence or lack of a critical nutrients like potassium, then the 

septin cortex is unable to grow a healthy bud (Gladfelter et al 2005). Therefore, as stated in the 

Baretto, et al., a lack of potassium inhibits the growth of yeast by causing changes in the 

expression of septin rings.  

This study reanalyzes the data presented by Barreto microarray results in order necessary 

in order to better understand the transcriptional responses in yeast during potassium starvation. 

Understanding how transcription factors are involved in a gene regulatory network related to 

potassium concentrations in the cell will aid in expanding knowledge about potassium’s role in 

cellular function. GRNmap and GRNsight were used to create this regulatory network to 

demonstrate the relationships among genes during potassium starvation from the microarray 

data. A MS Access database was also used in order to run GRNmap. Doing so facilitates its 

current and future usage to better understand and explore new information from microarray data. 

This paper aims to discover the gene regulatory networks induced by potassium starvation from 
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the Barreto, et al. microarray data in order to expand upon the existing knowledge regarding the 

function of potassium in the cell.  

Methods/Results/Discussion 
 
Figure 1:​ A flow chart of the project illustrating sequential steps to creating the gene regulatory network and 
problems encountered throughout.  

 
 
 
Table 1: ​Sample-relationship table formatted to regularize data into sample, strain, treatment, timepoint, and 
replicate.  
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Quality Assurance 

 Upon downloading of the Barreto et al. data, a sample-data relationship data was created 

as referred to in the flow chart (Table 1). The microarray data was regularized according to 
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treatment, time point, and replicate number. All strains were wildtypes, and each was grown in 

potassium-free media for either 10, 20, 40, 60, or 120 minutes. Each treatment had four 

replicates, except for the 10 minute time point, which only had two replicates. The format of the 

sample-data relationship data was used for the column headers of the microarray dataset. The 

first three column headers included the master index, ID, and standard name. The following 

columns listed the fold change data for each gene at every timepoint. These columns were 

standardized according to the following format 

 

For example K+ media treatment for ten minutes for replicate 1 had a column header of 

“BY4741_potassium_50mM_LogFC_t10m-1”.  Since there were four replicates for all time 

points except for the 10 minute time point, in which there are only two replicates, eighteen total 

column headers were formatted to organize the data according to time point and replicate 

number. 

 There were problems that occurred in formatting ID and Standard Name for the dataset 

as referred to in the flowchart as problem 1 (Table 1). Multiple genes contained duplicate data in 

which ID and Standard Names were changed to aliases. There presence of  multiple genes in the 

data was not mentioned in the research article. Genes that were repeated under different aliases 

were removed in order to delete any repetition of data that could alter the results. Multiple genes 

were also also missing IDs or Standard Names. The respective names of the genes was manually 

inputted in order to complete the dataset using the “OFR List → Gene List” tool on 

YEASTRACT. Multiple genes were also named under a “SGD” naming format, and so were 

changed to parallel the ID and Standard Name format for the completion of the dataset. After the 
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formatting the dataset properly, all the yeast gene IDs were able to be imported into the database 

successfully.  

Data Analysts 

In order to identify which genes have a significant fold change in gene expression, an 

ANOVA test was conducted from the raw data of the Barreto, et al. study. The data was filtered 

to list only the genes with a p-value of less than 0.05 to only list genes with a significant change 

in expression. Given that 2,985 (71.9% of the total) genes had a significant change, it is likely 

that some of the genes’ significance is by chance (Table 2). The Bonferroni p-value correction 

made an adjustment to the p-values to correct for multiple testing problems that might have 

occurred in the ANOVA test. Once the Bonferroni test was complete, the total amount of 

significant genes was lowered to 776 (18.7% of the total) genes (Table 2). This new number of 

significant genes is more accurate to the actual number of genes that have a significant 

expression change.  

STEM was performed from the ANOVA results to cluster the genes according to their 

fold changes over each timepoint. STEM results suggested that profiles 39, 22, 8, 35, 16, 23, 25, 

40 were significant (Fig. 2). A red color was designated to both profiles 39 and 22, indicating 

that both profiles belonged to the same gene cluster. Given that profile 39 was listed first in the 

results, suggesting that it was the most statistically significant cluster, and also had the simplest 

correlation over the timepoints, it was chosen for further analysis. The gene plot for Profile 39 

indicates that most of the 329 genes belonging to this cluster increased in expression after 

potassium starvation (Fig. 30. Furthermore, the gene ontology results produced from the GO 

terms of Profile 39 categorized the genes according to their cellular functions within the yeast 
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cells. The most significant categories were genes involved in the biosynthesis of cysteine, 

methionine, other cellular amino acids, and hydrogen sulfide. The GO terms were also 

categorized with the oxidation-reduction processes and general molecular functioning of the cells 

(Table 3).  The top fifteen most significant genes in Profile 39 were Gat1, Gcn4, Met4, Rpn4, 

Yrr1, Pdr1, Pdr3, Hsf1, Bas1, Hac1, Mga2, Rlm1, Sok2, Fhl, and Gis1 (Table 4).  

Barreto, et al. classified the genes involved in the yeast cells response to potassium 

starvation as being involved in oxidative stress, methionine/cysteine synthesis, cyclin levels, 

septin rings, the retrograde pathway, methylglyoxal production, and trehalose metabolism. 

However, when compared to results of Barreto, et al., the GO results of this study only 

substantiate how potassium starvation may induce changes in the expression of genes related to 

the biosynthesis of methionine, cysteine synthesis, and other amino acids. Bas1, for instance, has 

been documented to be a regulator of the histidine pathway (Daignan-Pornier, et al., 1920), and 

recent studies have suggested that Gcn4 regulates the expression of various genes during amino 

acid starvation in yeast (Natarajan, et al. 2010). These findings may suggest that potassium 

starvation leads to a shortage of these amino acids within the yeast cells. Consequently, in 

response to this stressor, the cells may activate genes responsible for synthesizing these amino 

acids to compensate for the shortage. Furthermore, Rlm1 has been found to be involved in the 

regulation of  the cell’s transition from G1 to the S phase of the cell cycle (Piccirillo, et al., 

2017). The regulation of Rlm1 as observed in the network suggests that the yeast cells may be 

regulating their growth during potassium starvation as well. Given that during the S phase, the 

cells are replicating their DNA, regulating the transition into the S phase may serve to conserve 

energy during the potassium starvation. Nonetheless, it should be noted that given that this study 

11 



only highlights the genes involved in Profile 39 of the STEM results, it is likely that the genes 

involved in the other metabolic pathways mentioned by Barreto, et al. may have been clustered 

in the other gene profiles produced by STEM.  

Before creating the regulatory network with GRNsight, genes Rpn4, Pdr1, Pdr3, and Hsf1 

were removed from the study because fold change data was not collected on these transcription 

factors by Barreto, et al. A GRNmap input file was created using a database compiled from the 

Barreto, et al. data. The input worksheet was loaded into MATLAB to produce an output file that 

would be later loaded into GRNsight for the weighted network. The LSE:minLSE ratio after 

running MATLAB was 1.176173. The gene regulatory network established a relationship 

between the eleven transcription factors involved in the study (Fig. 4, 5). Gat1 and Gcn4 were 

the most regulated genes while Fhl1 regulated the most number of genes. The strongest 

relationships were observed in the repression of Gis1 by Yrr1 and the induction of Gis1 by Sok2. 

A relatively strong relationship was also observed in the repression of Bas1 by Gat1. 

Transcription factors Gat1 and Yrr1 were also found to be self inducing and thus, response for 

the induction of their own genes. Recent studies have also suggested that a relationship does 

exist between the genes observed in the compiled regulatory network. Genes Sok2 and Gis1, for 

example, have been documented to be involved in the regulation of TPK1 in yeast (Pautasso, 

Rossi, 2014), and similarly, genes Gat1 and Fhl1 have also been found to be involved in similar 

metabolic pathways (Bandhakavi, 2008). Other studies have also found a linkage between Hac1 

and Mga2 (Covina, et al. 2018). 
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Coder 
 

The physical database containing standardized log-fold change gene expression data 

presented a number of challenges, as it required the standardization of naming of a number of 

tables and fields as well as the maintenance of different branches of work for each of the groups 

working on the project. It was created in Microsoft Access, a database management software. 

The database was stored in the “.accdb” file format, a container for the Jet Database Engine. 

Given that the classrooms hosting a central database were not always available, the server was 

hosted on a Windows 10 virtual machine set up using the Microsoft Azure cloud computing 

service. The database contained 12 tables - 2 metadata tables, 8 tables containing gene 

expression data, and 2 tables containing mRNA production and degradation rate information for 

each gene. 
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In order to catalog metadata regarding the gene expression data being stored in the 

database, two tables were created. The first, the “references” table, contained metadata regarding 

the article or data source from which all the data came from. Fields include authors, article title, 

NCBI GEO number, and more. This was linked to the second table, “samples_to_data”, via the 

PubMed ID field contained in both. The “samples_to_data” table contained information 

regarding the experiment from which the data sample was collected. Data samples were 

classified with the same unique identifier based on the time point of the treatment. Thus, multiple 

replicates of a certain time point would be given the same unique Sample ID identifier. Although 

unable to be able to link the entries in these fields to a given set of fields in a table in Microsoft 

Access, information for other accessors regarding the table in which the information was 

contained was encoded in a separate field. 

Inside the data tables, a number of changes were made regarding linkages and 

standardization of table and attribute (column) naming. For all the data tables, including the 

production and degradation rate tables, the Systematic Name of each table as the primary key, 

essentially stating that each collection of columns forming a row are a tuple, or collection of 

related data. Between the primary keys linkages of data from the same gene across multiple 

datasets were established by linking the primary keys (Fig. 7). Although not possible in 

Microsoft Access, a PostgreSQL database would be able to link attributes of data to a particular 

field in a table. This is annotated by the particularly heavy gray lines in Figure 7. Additionally, 

the naming of each table was standardized across all tables, save for the two accessory data and 

metadata tables. Table names were formatted to follow the format “[First Author Last 

Name]_[Year]_[strain (wild-type or mutant)]_log2_expression.” For example the table for the 
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gene expression data for the 2012 Baretto et al. paper would be called 

“Barreto_2012_wt_log2_expression”. The attribute names inside of each of these tables were 

standardized as well; each of these tables contained attributes for the master index (a number), 

systematic name of yeast gene, standard name, followed by the gene data, named by the 

following paradigm: “[Yeast Strain]_LogFC_t[Time Point]-[Replicate Number]”. The data for 

data in a table collected from a ​zap1​ deletion strain yeast in the 3rd replicate of the 20th time 

point of an experiment may therefore be named “dzap1_LogFC_t20-3”. 

The final process required merging the different branches of the database created by each 

group supervising the correct input in the database. Once all groups had uploaded their 

individual branch of the database to the shared Azure virtual machine, the database was merged. 

This was done via the import external data function in Access, where naming conflicts were 

resolved and redundant tables deleted. Finally, each team reviewed the compiled database, and 

especially their contributions. Skinny Genes, this group, detected an error in the previous version 

of our table being used, so the correct version was updated and uploaded to the shared virtual 

machine, as well as the class website. 

Conclusion 

The aim of this project was to standardize and re-analyze the gene expression data sets of 

a number of publicly accessible articles regarding environmental stress in​ Saccharomyces 

cerevisae​. This group analyzed the data set of an article by Barreto et al., published in 2012, 

which conducted an experiment testing the response of yeast to potassium starvation.  

Over the course of this project, we utilized the database that we created using the gene 

expression data. This database allowed the various groups in this project to have centralized 
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access to a number of curated and easily accessible gene expression data sets. If a group member 

desired particular information about the data we were analyzing, the group member simply 

needed to create a simple query. Furthermore, hosting it on a cloud machine increased the 

accessibility, as anyone with the login credentials could access the database at any time.  

The findings of this study substantiate the results of Barreto, et al. since the deprivation 

of potassium in the yeast cells seemed to trigger changes in gene expression. While the specific 

transcription factors highlighted in this project were not mentioned by Barreto, et al., the results 

regarding the biosynthetic pathways involved in potassium starvation parallel those found by 

Barreto and her colleagues. Both datasets suggest that intracellular potassium concentrations are 

linked to the changes in the expression of genes associated with amino acid biosynthesis. Thus, it 

is likely that the deprivation of potassium leads to a shortage of amino acids within the cell, 

especially methionine and cysteine, leading to an upregulation of the biosynthesis of these amino 

acids. Furthermore, though the gene classifications of Barreto, et al., only parallel one of the GO 

classifications found in the study, this project only focused on one of the eight significant gene 

profiles for analysis. Thus, it is likely that while this project substantiates how potassium 

starvation may be linked to amino acid biosynthesis, the correlation of genes associated with the 

other metabolic and biosynthetic pathways observed by Barreto, et al., may have also been 

observed had other gene profiles been studied from the STEM results. 

Upon re-analyzing the data, we decided that if the same experiment were to be performed 

in the future, we would alter the experiment in a number of ways. Firstly, we would actually 

measure the expression data for the 4 missing genes. Additionally, we would perform 

experiments that would describe how the 12 significant genes that we discovered affect other 
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cations and the effects on the cell, the production and degradation rates of other transcription 

factors, and cellular function in relation to homeostasis and membrane potential. 
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