
v
viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 19

DOI:10.1145/1378704.1378711 Peter J. Denning

The Profession of IT
Voices of Computing
The choir of engineers, mathematicians, and scientists who make up the bulk of
our field better represents computing than the solo voice of the programmer.

A
LTHOUG H ENROLLMENTS

IN computing degree pro-
grams appear to have bot-
tomed out at approximate-
ly half of their 2001 level,

there is no reassuring upward trend.
The industry need for computing pro-
fessionals will continue to exceed the
pipeline by at least one-third for some
time to come. Why do low enrollment
rates persist in such a good market?

Several key factors influencing low
enrollment rates are connected to the
myth “CS=programming”—tales of
dwindling employment opportuni-
ties, negative images of computing
work, and inflexible curricula.2,3 Revers-
ing this myth can result in considerable
progress.

Thirty-five years ago, Edsger Dijkstra
reacted to his generation’s version of
this myth by declaring himself proud
to be a programmer.5 Many followed
his lead. ACM has been proud: half the
A.M. Turing Award winners are in pro-
gramming, algorithms, and complexi-
ty.3 But our internal self-confidence did
not dispel the external myth.

Twenty years ago, the ACM and
IEEE warned that the myth could be-
come damaging.4 Today, the word

“programming” itself generates mis-
understandings. Internally, it is broad:
design, development, testing, debug-
ging, documentation, maintenance of
software, analysis, and complexity of
algorithms. Externally, it is narrow: the
U.S. Bureau of Labor Statistics defines
“programmer” to mean “coder.” Often
without realizing it, insiders and out-
siders interpret the same words with
entirely different meanings. When in-
siders broadened to object-oriented
programming, outsiders thought we
narrowed to the Java language.

Ten years ago, we tried another tack.
We broadened our view of comput-
ing to include information technology
(IT),1 and we defined what it means
to be fluent in IT.7,8 These works were
embraced in high schools and helped
generate enrollments in IT but not CS.
They have not dispelled the myth.

Today, Clay Shirky notes a trend that
may help explain the durability of the
myth.6 The general public is now con-
fronted with an amazing array of power-
ful tools for the common computational
tasks. Many believe they can accomplish
what they need as amateurs. Only a few
professionals are needed to program all
these tools for the many. There is no spe-

cial attraction to being a professional.
How can we communicate the rich-

ness of our field and dispel the myth?
What if we learn to speak in the voices
of the many kinds of computing pro-
fessionals? The programmer is a solo
voice. The whole, loud choir could
dispel the perception that the bulk of
computing is about programming. The
choir might also help make profession-
alism more attractive by showing our
many critical specialties that cannot
be done by amateurs.

To speak in a professional’s voice, I
immersed myself in the professional’s
practice. I spoke of war stories, experi-
ences, ambitions, fears, and everyday
things. I sang the joys (and sorrows) of
being a professional.

Education philosophers such as
John Dewey maintained there are two
ways of learning, which can be called
“learning-about” and “learning-to-be.”
Learning-about means to acquire a de-
scription; learning-to-be means to ac-
quire the practice. Learning about car-
pentry, music, or programming is not
the same as being a carpenter, a musi-
cian, or a programmer. Programming
seems to blur this distinction because
programmers build descriptions of al-

1_CACM_V51.8.indb 19 7/21/08 10:12:42 AM

20 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

gorithms. Programming predisposes
us to the “about” side of computing.
We are more used to speaking about
the principles and ideas of our field
than about how individuals experience
them. Descriptions of computational
methods can be dull and lifeless com-
pared to war stories from professionals
who design and use them.

What follows are six voices of com-
puting professionals. I added a seventh,
non-professional voice, which I call the
Last Voice. It is last not only because it
appears at the end of this column, but
because it may be the last voice con-
sulted by young people before deciding
against computing as a major.

All these voices are already within
you. Except the last, just let them speak.

the Programmer
I love programming. I know a lot of lan-
guages and can make computers really
hum. I do my best work when no one
bosses me around—that’s when I am at
my most creative. You know, program-
ming is the most fundamental part of
computer science. No computer can
run without a program. I enable every-
thing else in computing. I have written
some history-changing programs. Just
think about the software in the Apollo
missions—I helped get us to the moon.
Think of all those multiplayer virtual
reality games—I give a lot of people
immense pleasure learning important
skills and shooting each other up. I get
you safely across the country by helping
the air traffic controllers. I get you your
food by helping to route the trains and
trucks. I gave you your word processor,
spreadsheet, PowerPoint applications,
and even a few friendly hearted Easter

Eggs. I attacked the Internet with a
worm in 1988 and then helped stop the
worm and catch the perp. I do a lot of
things for you. I know that sometimes
you look down at programmers and
sometimes you think of us as the com-
puter science equivalent of hamburg-
er-flippers. But we deserve your respect
and admiration.

the user
I love using computers. I’m not a com-
puter scientist, and I don’t want to be.
I just love using the stuff computer sci-
entists make. Awesome! I get some re-
ally spiffy things done with your tools
even though I am an amateur. Most of
the time, your stuff does not bankrupt
me, waste my time, or kill me. My cell
phone, instant messages, Web, Inter-
net, Google Earth, Microsoft Office,
iTunes, iPod, and the ACM Digital Li-
brary. It just goes on and on. I am so
grateful to have all this computer stuff.
My wants and needs determine what
computer scientists can sell, so they of-
ten listen to me very carefully. Without

those wants and needs, in fact, I’d be a
nobody.

the computational thinker
I love problem solving. Not just any old
problem solving, but problem solving
using algorithms. I love finding ways to
apply algorithms I know to solve prob-
lems that folks didn’t realize could be
solved. It’s such a powerful way to solve
problems. All you have to do is think
algorithms and—poof!—solutions ap-
pear. Sometimes I implement those so-
lutions myself, and sometimes I let my
friends the programmers do that. I’ve
helped biologists search DNA databas-
es, meteorologists forecast weather,
petrologists find oil, oceanographers
track ocean currents, linguists teach
languages, and tax collectors insert
spreadsheet algorithms into the law.
Every so often somebody asks if I am a
computational scientist. I answer no—
while I think about how algorithms can
help scientists, I don’t do their science
for them. I’m all about thought. One of
my greatest successes is to get politi-
cians to think that through their laws
they are programmers of national so-
cial systems. I’ve got economists think-
ing they can program the economy with
the right policies. Perhaps my greatest
triumph is to get people everywhere to
think their brains are computers and
that everything they do and say is sim-
ply an output.

the mathematician
I love mathematics. I know mathemat-
ics sounds pretty abstract to a lot of
people. It’s not for everyone. We’ve
long been recognized as the language
of physics. Now we’ve got the addition-

We are more used
to speaking about
the principles and
ideas of our field than
about how individuals
experience them.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 J
O

E
L

 C
A

S
T

I
L

L
O

1_CACM_V51.8.indb 20 7/21/08 10:12:42 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 21

al recognition of being the language
for computation. We help people find
representations for real-world things
and then prove things about their rep-
resentations. In computer science we
have invented new mathematics for an-
alyzing algorithms. We explained why a
binary search is so much faster than a
linear search, and why a bubble sort is
so much slower than a merge sort. We
figured out how to parse programming
languages efficiently, making the jobs
of programmers so much easier. Our
tools help programmers prove that
their complicated programs actually
work, meaning that users can sleep
at night knowing that their airplanes
won’t crash and their business soft-
ware won’t ruin them. Our biggest tri-
umph has been to show that over 3,000
common problems in science, engi-
neering, and business are so difficult
to solve that even the fastest supercom-
puters would take centuries on simple
versions. We call this the P=NP issue.
Whoever proves that P=NP would win
all the math prizes and the ACM Turing
Award. And no, proving P=NP does not
boil down to proving N=1.

the engineer
I love building things. My math friends
like picturing things in their minds; I
like holding things in my hands and
putting them through their paces. You
tell me what you want, what budget I
have, and how much time I have, and
I’ll find a way to build a computing
system that does it. I don’t need every-
thing to be figured out mathematically
before I can start. I built your operat-
ing systems, your networks, your TCP
and IP, your air traffic control system,

your banking systems, your game en-
gines, and your search engines. I built
your memory chips, your CPUs, your
stacks, your graphics displays, your
warehouse computers, your BlackBer-
ries, and your iPods. I know how to
make software and hardware artifacts
reliable, dependable, usable, safe,
and secure. I love the smells of solder,
motherboards, routers, power sup-
plies, and musty cable racks. Some-
times I even think I can smell rotting
bugs in software. I’m so good at doing
things faster, cheaper, and better that
I keep on giving you Moore’s Law year
after year.

the scientist
I love discovering new things about
nature. Recently my friends in biology
have discovered that DNA transcrip-
tion is a natural information process.
What an amazing discovery. Compu-
tation is not an artifact of a computer,
it’s part of life! My friends in physics,
economics, materials, chemistry, me-
teorology, oceanography, and cosmol-
ogy are all making similar discoveries.
What a great time for collaborations
on new discoveries about those natural
processes. But that’s not all I do. I dis-
covered scientific principles for com-
puting. My scientific analysis guided
the design of the first electronic com-
puters. My principle of locality helped
us achieve high performance through
caching in everything from chips to
the Internet. I discovered fast algo-
rithms for throughput and response
time of large systems and networks,
launching the performance evaluation
industry. I brought the experimental
method to architecture, program per-

formance improvement, large system
design, mathematical software, mod-
eling, and simulation. My greatest tri-
umph in the CS realm has been with
artificial intelligence. Now that they
have accepted my methods, they are
making remarkable advances with ma-
chines that mimic human intelligent
behavior.

the Last Voice: the catalog
Students begin by learning the use of
computer programming as a problem-
solving tool. Topics in procedural pro-
gramming include expressions, control
structures, simple data types, input-
output, graphical interfaces, testing,
debugging, and programming environ-
ments. The student then advances to
problem solving with object-oriented
programming. Topics include classes,
inheritance, packages, collections, ex-
ceptions, polymorphism, and recursive
thinking. A good deal of time will be
spent on programming projects.

References
1. Denning, P. Who are we? Commun. ACM 44, 2 (Feb.

2001), 15–19.
2. Denning, P. The field of programmers myth. Commun.

ACM 47, 7 (July 2004), 15–20.
3. Denning, P. Recentering computer science. Commun.

ACM 48, 11 (Nov. 2005), 15–19.
4. Denning, P. et al. Computing as a discipline. Commun.

ACM 32, 1 (Jan. 1989), 9–23.
5. Dijkstra, E. The humble programmer. Commun. ACM

15, 10 (Oct. 1972), 859–866.
6. Shirky, C. Here Comes Everybody. Penguin, 2008.
7. Snyder, L. Fluency with Information Technology.

Addison-Wesley, 2002.
8. Wing, J. Computational thinking. Commun. ACM 49, 3

(Mar. 2006), 33–35.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Information Innovation and
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

© 2008 ACM 0001-0782/08/0800 $5.00

1_CACM_V51.8.indb 21 7/21/08 10:12:43 AM

