Difference between revisions of "Sulfiknights"

From LMU BioDB 2019
Jump to navigation Jump to search
(Ivy Macaraeg: edited format)
(Ivy Macaraeg: replaced reference)
Line 22: Line 22:
 
2. Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659-667. https://doi.org/10.1016/j.copbio.2009.09.013
 
2. Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659-667. https://doi.org/10.1016/j.copbio.2009.09.013
 
===Ivy Macaraeg===
 
===Ivy Macaraeg===
1. Khullar, S., & Reddy, M. S. (2020). Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis. Chemosphere, 240, 124914. [https://doi.org/10.1016/j.chemosphere.2019.124914 https://doi.org/10.1016/j.chemosphere.2019.124914]
+
1. Tripathi, P., & Tripathi, R. D. (2019). Metabolome Modulation During Arsenic Stress in Plants. In Plant-Metal Interactions (pp. 119-140). Springer, Cham. [https://doi.org/10.1007/978-3-030-20732-8_7 https://doi.org/10.1007/978-3-030-20732-8_7]
  
 
2. Khullar, S., & Sudhakara Reddy, M. (2019). Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal (loid) homeostasis. Environmental microbiology reports, 11(2), 53-61. [https://doi.org/10.1111/1758-2229.12712 https://doi.org/10.1111/1758-2229.12712]
 
2. Khullar, S., & Sudhakara Reddy, M. (2019). Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal (loid) homeostasis. Environmental microbiology reports, 11(2), 53-61. [https://doi.org/10.1111/1758-2229.12712 https://doi.org/10.1111/1758-2229.12712]

Revision as of 15:31, 12 November 2019

Sulfiknight Links
BIOL Databases Main Page Sulfiknights: Project Overview Page Final Project Deliverables Requirements Sulfiknights: Final Project Deliverables Members Project Manager & Quality Assurance: Naomi Tesfaiohannes Quality Assurance: Joey Nimmers-Minor Data Analysis: Ivy-Quynh Macaraeg & Marcus Avila Designer: DeLisa Madere
Assignment Pages Week 11 Week 12/13 Week 15

Template:Sulfiknights

Team Feedback

Each team member should reflect on the team's progress:

  • What worked?
  • What didn't work?
  • What will I do next to fix what didn't work?

Annotated Bibliography Sources

DeLisa Madere

1. Ibstedt, S., Sideri, T. C., Grant, C. M., & Tamás, M. J. (2014). Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress. Biology open, 3(10), 913-923. doi: 10.1242/bio.20148938

2.

Naomi Tesfaiohannes

1. Zhou, X., Arita, A., Ellen, T. P., Liu, X., Bai, J., Rooney, J. P., ... & Costa, M. (2009). A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity. Genomics, 94(5), 294-307. https://doi.org/10.1016/j.ygeno.2009.07.003

2. Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659-667. https://doi.org/10.1016/j.copbio.2009.09.013

Ivy Macaraeg

1. Tripathi, P., & Tripathi, R. D. (2019). Metabolome Modulation During Arsenic Stress in Plants. In Plant-Metal Interactions (pp. 119-140). Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_7

2. Khullar, S., & Sudhakara Reddy, M. (2019). Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal (loid) homeostasis. Environmental microbiology reports, 11(2), 53-61. https://doi.org/10.1111/1758-2229.12712

References

  • Thorsen, M., Lagniel, G., Kristiansson, E., Junot, C., Nerman, O., Labarre, J., & Tamás, M. J. (2007). Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiological genomics, 30(1), 35-43. DOI: 10.1152/physiolgenomics.00236.2006