Dramir36 Week 7
Jump to navigation
Jump to search
User:Dramir36 template:Dramir36 Skinny Genes
- Week 1
- Week 2
- Week 3
- Week 4
- Week 5
- Week 6
- Week 7
- Week 8
- Week 9
- Week 10
- Week 11
- Week 12/13
- Week 14
- Week 15
Contents
Purpose
- to conduct the "analyze" step of the data life cycle for a DNA microarray dataset.
- to develop an intuition about what different p-value cut-offs mean.
- to keep a detailed electronic laboratory notebook to facilitate reproducible research.
- to revisit the "Deception at Duke" case with new insights because you have analyzed your own dataset.
Background
This is a list of steps required to analyze DNA microarray data.
- Quantitate the fluorescence signal in each spot
- Calculate the ratio of red/green fluorescence
- Log2 transform the ratios
- Steps 1-3 have been performed for you by the GenePix Pro software (which runs the microarray scanner).
- Normalize the ratios on each microarray slide
- Normalize the ratios for a set of slides in an experiment
- Steps 4-5 was performed for you using a script in R, a statistics package (see: Microarray Data Analysis Workflow)
- You will perform the following steps:
- Perform statistical analysis on the ratios
- Compare individual genes with known data
- Steps 6-7 are performed in Microsoft Excel
- Pattern finding algorithms (clustering)
- Map onto biological pathways
- We will use software called STEM for the clustering and mapping
- Identifying regulatory transcription factors responsible for observed changes in gene expression
- Dynamical systems modeling of the gene regulatory network (GRNmap)
- Viewing modeling results in GRNsight
Notes/Methods/Results
The strain that will be analyzed is dHAP4. There are four replicates for the 15,30, and 60 minute time points, but only three replicates for the 90 and 120 minute time points.
- T test: is this gene expression change significantly different than zero at a time point?
- p>0.05 5%
- probability that you would have seen at least this big of a change by chance.
- ANOVA: is the gene expression significantly different than zero at any time point?
- Values below 0.25 should be considered to be a gene with no change in expression
Experimental Design and Getting Ready
The data used in this exercise is publicly available at the NCBI GEO database in record GSE83656.
- Begin by downloading the Excel file for dHAP4, found in the "Data/Files" section of this page
- In the Excel spreadsheet, there is a worksheet labeled "Master_Sheet_dHAP4"
- In this worksheet, each row contains the data for one gene (one spot on the microarray).
- The first column contains the "MasterIndex", which numbers all of the rows sequentially in the worksheet so that we can always use it to sort the genes into the order they were in when we started.
- The second column (labeled "ID") contains the Systematic Name (gene identifier) from the Saccharomyces Genome Database.
- The third column contains the Standard Name for each of the genes.
- Each subsequent column contains the log2 ratio of the red/green fluorescence from each microarray hybridized in the experiment (steps 1-5 above having been performed for you already), for each strain starting with wild type and proceeding in alphabetical order by strain deletion.
- Each of the column headings from the data begin with the experiment name ("wt" for wild type S. cerevisiae data, "dCIN5" for the Δcin5 data, etc.). "LogFC" stands for "Log2 Fold Change" which is the Log2 red/green ratio. The timepoints are designated as "t" followed by a number in minutes. Replicates are numbered as "-0", "-1", "-2", etc. after the timepoint.
- The timepoints are t15, t30, t60 (cold shock at 13°C) and t90 and t120 (cold shock at 13°C followed by 30 or 60 minutes of recovery at 30°C).
Statistical Analysis Part 1: ANOVA
The purpose of the within-stain ANOVA test is to determine if any genes had a gene expression change that was significantly different than zero at any timepoint.
- Create a new worksheet, naming it either "(STRAIN)_ANOVA" as appropriate. For example, you might call yours "wt_ANOVA" or "dHAP4_ANOVA"
- Copy the first three columns containing the "MasterIndex", "ID", and "Standard Name" from the "Master_Sheet" worksheet for your strain and paste it into your new worksheet. Copy the columns containing the data for your strain and paste it into your new worksheet.
- At the top of the first column to the right of your data, create five column headers of the form (STRAIN)_AvgLogFC_(TIME) where STRAIN is your strain designation and (TIME) is 15, 30, etc.
- In the cell below the (STRAIN)_AvgLogFC_t15 header, type
=AVERAGE(
- Then highlight all the data in row 2 associated with t15, press the closing paren key (shift 0),and press the "enter" key.
- This cell now contains the average of the log fold change data from the first gene at t=15 minutes.
- Click on this cell and position your cursor at the bottom right corner. You should see your cursor change to a thin black plus sign (not a chubby white one). When it does, double click, and the formula will magically be copied to the entire column of 6188 other genes.
- Repeat steps (4) through (8) with the t30, t60, t90, and the t120 data.
- Now in the first empty column to the right of the (STRAIN)_AvgLogFC_t120 calculation, create the column header (STRAIN)_ss_HO.
- In the first cell below this header, type
=SUMSQ(
- Highlight all the LogFC data in row 2 (but not the AvgLogFC), press the closing paren key (shift 0),and press the "enter" key.
- In the next empty column to the right of (STRAIN)_ss_HO, create the column headers (STRAIN)_ss_(TIME) as in (3).
- Make a note of how many data points you have at each time point for your strain. For most of the strains, it will be 4, but for dHAP4 t90 or t120, it will be "3", and for the wild type it will be "4" or "5". Count carefully. Also, make a note of the total number of data points. Again, for most strains, this will be 20, but for example, dHAP4, this number will be 18, and for wt it should be 23 (double-check).
- In the first cell below the header (STRAIN)_ss_t15, type
=SUMSQ(<range of cells for logFC_t15>)-COUNTA(<range of cells for logFC_t15>)*<AvgLogFC_t15>^2
and hit enter.- The
COUNTA
function counts the number of cells in the specified range that have data in them (i.e., does not count cells with missing values). - The phrase <range of cells for logFC_t15> should be replaced by the data range associated with t15.
- The phrase <AvgLogFC_t15> should be replaced by the cell number in which you computed the AvgLogFC for t15, and the "^2" squares that value.
- Upon completion of this single computation, use the Step (7) trick to copy the formula throughout the column.
- The
- Repeat this computation for the t30 through t120 data points. Again, be sure to get the data for each time point, type the right number of data points, and get the average from the appropriate cell for each time point, and copy the formula to the whole column for each computation.
- In the first column to the right of (STRAIN)_ss_t120, create the column header (STRAIN)_SS_full.
- In the first row below this header, type
=sum(<range of cells containing "ss" for each timepoint>)
and hit enter. - In the next two columns to the right, create the headers (STRAIN)_Fstat and (STRAIN)_p-value.
- Recall the number of data points from (13): call that total n.
- In the first cell of the (STRAIN)_Fstat column, type
=((n-5)/5)*(<(STRAIN)_ss_HO>-<(STRAIN)_SS_full>)/<(STRAIN)_SS_full>
and hit enter.- Don't actually type the n but instead use the number from (13). Also note that "5" is the number of timepoints.
- Replace the phrase (STRAIN)_ss_HO with the cell designation.
- Replace the phrase <(STRAIN)_SS_full> with the cell designation.
- Copy to the whole column.
- In the first cell below the (STRAIN)_p-value header, type
=FDIST(<(STRAIN)_Fstat>,5,n-5)
replacing the phrase <(STRAIN)_Fstat> with the cell designation and the "n" as in (13) with the number of data points total. . Copy to the whole column. - Before we move on to the next step, we will perform a quick sanity check to see if we did all of these computations correctly.
- Click on cell A1 and click on the Data tab. Select the Filter icon (looks like a funnel). Little drop-down arrows should appear at the top of each column. This will enable us to filter the data according to criteria we set.
- Click on the drop-down arrow on your (STRAIN)_p-value column. Select "Number Filters". In the window that appears, set a criterion that will filter your data so that the p value has to be less than 0.05.
- Excel will now only display the rows that correspond to data meeting that filtering criterion. A number will appear in the lower left hand corner of the window giving you the number of rows that meet that criterion. We will check our results with each other to make sure that the computations were performed correctly.
Calculate the Bonferroni and p value Correction
- Now we will perform adjustments to the p value to correct for the multiple testing problem. Label the next two columns to the right with the same label, (STRAIN)_Bonferroni_p-value.
- Type the equation
=<(STRAIN)_p-value>*6189
, Upon completion of this single computation, use the Step (10) trick to copy the formula throughout the column. - Replace any corrected p value that is greater than 1 by the number 1 by typing the following formula into the first cell below the second (STRAIN)_Bonferroni_p-value header:
=IF((STRAIN)_Bonferroni_p-value>1,1,(STRAIN)_Bonferroni_p-value)
, where "(STRAIN)_Bonferroni_p-value" refers to the cell in which the first Bonferroni p value computation was made. Use the Step (10) trick to copy the formula throughout the column.
Calculate the Benjamini & Hochberg p value Correction
- Insert a new worksheet named "(STRAIN)_ANOVA_B-H".
- Copy and paste the "MasterIndex", "ID", and "Standard Name" columns from your previous worksheet into the first two columns of the new worksheet.
- For the following, use Paste special > Paste values. Copy your unadjusted p values from your ANOVA worksheet and paste it into Column D.
- Select all of columns A, B, C, and D. Sort by ascending values on Column D. Click the sort button from A to Z on the toolbar, in the window that appears, sort by column D, smallest to largest.
- Type the header "Rank" in cell E1. We will create a series of numbers in ascending order from 1 to 6189 in this column. This is the p value rank, smallest to largest. Type "1" into cell E2 and "2" into cell E3. Select both cells E2 and E3. Double-click on the plus sign on the lower right-hand corner of your selection to fill the column with a series of numbers from 1 to 6189.
- Now you can calculate the Benjamini and Hochberg p value correction. Type (STRAIN)_B-H_p-value in cell F1. Type the following formula in cell F2:
=(D2*6189)/E2
and press enter. Copy that equation to the entire column. - Type "STRAIN_B-H_p-value" into cell G1.
- Type the following formula into cell G2:
=IF(F2>1,1,F2)
and press enter. Copy that equation to the entire column. - Select columns A through G. Now sort them by your MasterIndex in Column A in ascending order.
- Copy column G and use Paste special > Paste values to paste it into the next column on the right of your ANOVA sheet.
- Zip and upload the .xlsx file that you have just created to the wiki.
You must finish up to this point for the interim deadline of Tuesday, October 22, 12:01am Pacific time, so that the instructor can check your calculations before class.
Data/Files
- Startup File: File:BIOL367 F19 microarray-data dHAP4 DR.xlsx
Conclusion
Acknowledgments
- Copied purpose and methods/procedure from Week 7 assignment page to individual journal and modified steps to relate to the dHAP4 data